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ABSTRACT	

Advanced reactors designed to operate at higher temperatures than current light water re-
actors require structural materials with high creep strength and creep-fatigue resistance to 
achieve long design lives.  Grade 91 is a ferritic/martensitic steel designed for long creep life 
at elevated temperatures.  It has been selected as a candidate material for sodium fast reactor 
intermediate heat exchangers and other advanced reactor structural components.  This report 
focuses on the creep deformation and rupture life of Grade 91 steel. 

The time required to complete an experiment limits the availability of long-life creep data 
for Grade 91 and other structural materials.  Design methods often extrapolate the available 
shorter-term experimental data to longer design lives.  However, extrapolation methods tacitly 
assume the underlying material mechanisms causing creep for long-life/low-stress conditions 
are the same as the mechanisms controlling creep in the short-life/high-stress experiments.  A 
change in mechanism for long-term creep could cause design methods based on extrapolation 
to be non-conservative. 

The goal for physically-based microstructural models is to accurately predict material re-
sponse in experimentally-inaccessible regions of design space.  An accurate physically-based 
model for creep represents all the material mechanisms that contribute to creep deformation 
and damage and predicts the relative influence of each mechanism, which changes with load-
ing conditions.  Ideally, the individual mechanism models adhere to the material physics and 
not an empirical calibration to experimental data and so the model remains predictive for a 
wider range of loading conditions. 

This report describes such a physically-based microstructural model for Grade 91 at 600° 
C.  The model explicitly represents competing dislocation and diffusional mechanisms in both 
the grain bulk and grain boundaries.  The model accurately recovers the available experi-
mental creep curves at higher stresses and the limited experimental data at lower stresses, pre-
dominately primary creep rates.  The current model considers only one temperature.  Howev-
er, because the model parameters are, for the most part, directly related to the physics of fun-
damental material processes, the temperature dependence of the properties are known.  There-
fore, temperature dependence can be included in the model with limited additional effort. 

The model predicts a mechanism shift for 600° C at approximately 100 MPa from a dislo-
cation-dominated regime at higher stress to a diffusion-dominated regime at lower stress.  
This mechanism shift impacts the creep life, notch-sensitivity, and, likely, creep ductility of 
Grade 91.  In particular, the model predicts existing extrapolation methods for creep life may 
be non-conservative when attempting to extrapolate data for higher stress creep tests to low 
stress, long-life conditions.  Furthermore, the model predicts a transition from notch-
strengthening behavior at high stress to notch-weakening behavior at lower stresses.  Both 
behaviors may affect the conservatism of existing design methods.  
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1 Introduction	

1.1 Background	

Grade 91 is a ferritic/martensitic steel developed at Oak Ridge National Laboratory and Com-
bustion Engineering for improved creep life in high temperature Liquid Metal Reactors [1] [2].  
To improve the economics of plant construction many current advanced reactor concept designs 
consider 60-year design lives [3], requiring Grade 91 and other high temperature, high creep 
strength advanced alloys to maintain adequate design margins against creep deformation, creep 
rupture, and creep-fatigue damage. 

The time required to complete an experiment necessarily limits the available creep data avail-
able for a particular material.  Sixty-year experiments are not practical and so designers must ex-
trapolate long-term creep properties from shorter term, higher stress experiments.  Such extrapo-
lation procedures necessarily assume that the deformation mechanisms controlling creep defor-
mation and rupture processes in the extrapolated regime are the same as the controlling mecha-
nisms in the shorter-term experiments.  Potentially, under long-term creep conditions different 
material mechanisms govern the processes of material deformation and failure.  If so, this could 
render extrapolation methods based on short-term data non-conservative. 

Of particular concern for Grade 91 are long-term creep ductility and notch sensitivity.  At 
higher loads Grade 91 typically undergoes ductile creep failure.  However, some experiments at 
lower stress show limited ductility, with reduction in area on the order of a few percent.  Limited 
creep ductility is a direct concern for design and this data could indicate a change in mechanism 
that could affect the conservatism of typical extrapolation procedures.  Recently, the Electric 
Power Research Institute (EPRI) attributed the low creep ductility to chemistry effects and rec-
ommended a new grade for Grade 91 steel with restricted chemistry to resolve the low creep duc-
tility issues.  Similarly, at higher loading stresses Grade 91 is notch strengthening [4], i.e. the 
presence of a notch increases the experimental rupture life.  However, there is experimental evi-
dence that for severe notches Grade 91 becomes notch weakening, which could suggest a similar 
transition to notch-weakening behavior at lower loading stresses [5]. 

Experiments cannot directly test long sixty-year design lives.  An alternative approach for ex-
amining long-term creep behavior is a physically-based microstructural model.  Such a model 
captures the relevant microscale deformation mechanisms causing creep and creep rupture and 
extends this microscale model to simulate macroscale properties.  In Grade 91 the relevant creep 
deformation mechanisms operate on the mesoscale – the scale of crystalline grains and grain 
boundaries.  Crystal plasticity (CP) models deformation on this length scale and this report de-
scribes a crystal plasticity model for creep deformation in Grade 91, aimed at capturing all rele-
vant creep deformation mechanisms in the material and accurately representing long term creep.  
The final complete model for Grade 91 couples this CP representation of deformation in the grain 
bulk with a physically based model for creep damage on the material grain boundaries (GBs).  
The damage model represents both creep/dislocation and diffusional void growth mechanisms 
and includes a framework for establishing stress and/or strain-based void nucleation criteria. 

Grade 91 has a complex microstructure and so the composite model must focus on a few rele-
vant deformation mechanisms and a particular level of the hierarchical Grade 91 structure.  The 
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goal of the model is to capture the most important deformation modes in order to examine how 
the balance of deformation mechanisms changes with loading stress and triaxiality.  The model 
retains a strong link to the physics underlying the deformation mechanisms so that its predictions 
can be extrapolated to long-term behavior.  The model must, at some point, be calibrated to the 
available short-term test data, but a physically based modeling approach can account for mecha-
nism changes in the long-life, low-stress regime where conventional extrapolation procedures 
might fail to produce conservative predictions of creep properties. 

The model represents the important mechanisms of creep and creep rupture in both the grain 
bulk and the grain boundaries.  This report describes validating the model against the available 
experimental short-life creep data as well as some data at low stress conditions, in particular pri-
mary creep rates.  The validated model is then used to predict creep behavior for long-life condi-
tions.   

1.2 Creep	mechanisms	in	Grade	91	

Grade 91 has a hierarchical microstructure.  At the highest level are collections of martensitic 
blocks arranged inside a prior austenite grain (PAG) [6] [7].  Each block represents a different 
austenite to martensite lattice transformation, starting from the same PAG, and so the orientations 
of the laths inside each PAG are correlated.  Blocks are typically aligned in parallel groups called 
packets and several packets form inside each PAG.  Tempering separates each block into a collec-
tion of parallel laths [8].  These laths can be viewed as subgrains as the misorientation between 
each lath in a block is much less than the misorientation between different blocks.  This hierar-
chical structure scales from PAGs on the order of 30 µm down to the laths with a width of about 
0.2 µm.  Figure 1-1 shows a sketch of this structure.  Note that only the PAGs and packets are ap-
proximately equiaxed, the block and lath structures are laminar. 

Initial dislocation density in Grade 91 is high – around 1013 m-2 [7].  The lath subgrain bound-
aries themselves can be viewed as a dense dislocation network.  A variety of carbides and nitrides 
pepper the microstructure.  M23C6, where M is an alloying species, precipitates cluster on grain 
boundaries [6] [7].  These precipitates, which have diameters on the order of 100 nm [9], play a 
key role in the increased creep strength of Grade 91.  Finer precipitates, on the order of 20 nm, 
are more uniformly distributed throughout the microstructure, often of the form MC or MN.  

This high initial defect density means that the structure tends to relax and coarsen under de-
formation, particularly at high temperature.  The dislocation structure recovers, leading to sub-
stantial coarsening of the laths and a reduction in the overall dislocation density [10].  This leads 
to the macroscale softening commonly observed in uniaxial and cyclic tests on Grade 91. 

Creep deformation in the Grade 91 takes place via two categories of mechanisms: dislocation 
motion and point defect diffusion, the exact form of which is debated in the literature.  Because of 
the high initial dislocation density the kinetics of dislocation climb and other recovery mecha-
nisms largely govern dislocation motion [9].  Both climb and the diffusional mechanism are 
thermally activated, so the interplay of the two mechanisms will be controlled by both tempera-
ture and the stress on the material.  These deformation mechanisms, combined with thermal ag-
ing, cause and interact with the microstructural changes described above. 

This work approximates the net effect of several diffusional mechanisms with a simple linear 
viscous deformation rate active in the grain bulk.  In actuality, vacancies use grain boundaries and 
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other defect structures as diffusional highways, as the reduced lattice coherence in these regions 
increases their effective diffusivity.  However, the model developed here only explicitly repre-
sents the highest level of the hierarchical microstructure: the prior austenite grains.  Each PAG 
contains many packet, block, and lath subboundaries.  The model developed here for grain bulk 
deformation must average the effect of these subboundaries into a homogeneous model for grain 
bulk deformation in a single, oriented PAG.  For diffusional mechanisms, a reasonable approach 
is to assume the defect network is uniformly geometrically distributed, resulting in effective iso-
tropic diffusion on the scale of a PAG. 

While these interacting mechanisms are active in the PAG bulk the state of the grain bounda-
ries also evolves as deformation progresses.  There is an extensive literature on creep damage, 
which will not be summarized in detail here.  Suffice to say both diffusional and dislocation-
based mechanisms can, with time, grow existing voids on the grain boundaries and nucleate new 
voids, leading to void coalesce and creep damage that eventually causes rupture [10] [11].  These 
grain boundary processes are intrinsically linked to the processes occurring in the grain bulk, and 
so a complete grain boundary model must include information about the state of adjacent grains. 

To summarize, the key creep mechanisms in Grade 91 are bulk grain motion mediated by dis-
locations, bulk motion mediated by variety of diffusional processes (approximated here as iso-
tropic diffusion in the grain bulk), and void nucleation, growth, and coalesce on grain boundaries, 
which themselves can be mediated by either dislocation or diffusional processes.  These are the 
key features that the crystal plasticity model in this reports aims to capture, focusing on the high-
est scale of the microstructure, the PAGs. 

1.3 Report	outline	 	

Including this introduction and a concluding section this report divides the work into eight 
chapters.   The general approach is to briefly summarize previous project results on a particular 
topic and then focus in more detail on the accomplishments of the current reporting period.  The 
report overall describes a complete microstructural model for Grade 91 at 600° C, one that en-
compasses all relevant microstructural creep mechanisms, matches available experimental data, 
and can provide confident predictions for the creep response of Grade 91 for low stress, long-life, 
experimentally inaccessible conditions. 

Chapter 2 summarizes work on the grain boundary model.  This model, embedded on grain 
boundaries using cohesive-interface elements, represents the dislocation- and diffusion mediated 
nucleation, growth, and coalescence of voids leading to creep damage in the material.  The cur-
rent year’s work focuses on numerical improvements to the model to increase the stability of the 
overall simulation framework and to extend the simulations farther into the tertiary creep regime. 

The next chapter describes the final model for grain bulk deformation.  The composite model 
includes terms representing two mechanisms: creep deformation via dislocation motion, heavily 
mediated by recovery processes, and a bulk, isotropic diffusional mechanism designed to homog-
enize the effect of vacancy diffusion along the dense, interlocking network of dislocations and 
subgrain boundaries inside a single PAG.  Additionally, this chapter describes an alternate, dislo-
cation density-based crystal plasticity formulation developed in the current reporting period and 
compares and contrasts it to the final, more empirical approach adopted for the final model. 
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Chapter 4 highlights a particular numerical issue encountered in polycrystal simulations in-
cluding sliding grain boundaries: singular and oscillating GB traction fields resulting from the 
near-Hertzian contact conditions at triple points where one grain slides into another.  This can be 
viewed as the problem of tuning an appropriate penalty stiffness to describe this contact.  The re-
port describes the process used to tune this penalty stiffness and reports the optimal value used in 
the complete model. 

Then the report describes the effect of the representative volume element (RVE) geometry 
and boundary conditions.  Previous project work considers block RVEs, essentially taking a rep-
resentative region of microstructure and artificially slicing out a cube to use as the simulation 
domain.  With periodic boundary conditions this method results in artificial grain boundaries on 
the RVE faces that are not necessarily representative of the actual microstructure.  Alternatively, 
an RVE can be a true periodic structure of grains generated through periodic Voronoi tessellation.  
Such structures do not have artificial boundaries on the periodic cell edges but require sophisti-
cated algorithms to insert cohesive elements representing the GBs and more complicated, but 
more general, periodic boundary conditions.  Ultimately, the work described here shows both 
types of cells produce nearly identical results for higher applied loads.  There are minor differ-
ences in the primary creep regime and at lower stresses, but these differences are not sufficient to 
justify the increased complexity of the true periodic cells. 

Chapter 6 then describes the complete microstructural model for creep deformation in Grade 
91.  The section describes the process of calibrating and selecting material properties from availa-
ble experimental data and validates the model against available creep curves.  A key result 
emerges: at 600° C the model predicts a shift in mechanism from dislocation-dominated creep 
above 100 MPa to diffusion-dominated creep below 100 MPa.  This mechanism shift also appears 
in experimental measurements of primary creep rate.  The mechanism shift affects the microstruc-
tural details of creep, the macroscale creep curves, and times to the onset of tertiary creep.  Plots 
of minimum creep rate versus stress illustrate potential problems extrapolating higher stress ex-
perimental data into the low stress, long life regime.  Furthermore, because the model is physical-
ly based, parameters describing the final void density and void size can be compared to experi-
ments.  Both the model and experiments show a transition from larger numbers of smaller voids 
in the dislocation-dominated regime to fewer, larger voids in the diffusion regime, thus validating 
the model predictions. 

The penultimate chapter applies the validated, microstructural model to notch effects.  Avail-
able high stress creep tests show notch-strengthening behavior in Grade 91.  The model matches 
the results of these experiments, showing notch strengthening behavior for high axial loads.  
However, at lower loads the model predicts notch strengthening for moderate notches with a tran-
sition to notch weakening for more severe triaxial stress states.  Finally, at low loads in the diffu-
sion regime the model predicts Grade 91 will be notch weakening.  This is a key result, as it af-
fects the design of Grade 91 structures with long design lives – most existing design methodolo-
gies assume notch strengthening behavior.  A simple microstructural model elucidates the simula-
tion trends, both for increasing/decreasing axial stress and notch severity, in terms of a mecha-
nism shift between dislocation and diffusion mediated creep.  These results illustrate the power of 
a physically-based model – once validated it can accurately simulate loading conditions difficult 
to reach experimentally and reveal material behavior that may have a critical impact on the design 
and construction of advanced reactors. 
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Finally, the report concludes with a chapter summarizing the important results of the project 
and suggesting areas for future research.  

1.4 Chapter	figures	

 

Figure 1-1. Schematic describing the microstructure of Grade 91. 
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2 Grain	Boundary	Modeling	

2.1 Overview	of	constitutive	model	for	grain	boundaries	

The constitutive modeling of grain boundary deformation in this work focuses on the creep 
behavior of martensitic steels of the Grade 91 class and similar alloys at high temperatures (550-
650 °C). Previous work, e.g., [12] provide detailed accounts of the experimental testing and re-
sults that elucidate the deformation mechanisms that govern long term creep under the conditions 
in the materials of interest.  The major mechanisms are summarized below and the modeling pro-
cedures follow.  

The prior austenite grain boundaries (PAGBs) in Grade 91 type alloys contribute to the over-
all bdeformation of a specimen through tangential sliding and normal-direction opening mecha-
nisms. The grain boundary sliding adds to the creep straining over the entire life and is especially 
significant at lower applied stresses.  The opening deformation of PAGBs is ascribed to cavity 
formation, growth, and coalescence.  During primary and secondary creep phases, the stress con-
centrations at particles and triple points nucleate small cavities. Under continued loading, these 
cavities on the PAGBs will grow and eventually coalesce to form microcracks which drive the 
tertiary creep phase.  

The modeling approach employs an interface cohesive model with distinct sliding and cavita-
tion responses to explicitly meshed PAGBs.  This model defines the traction-separation relation-
ships of initially zero-thickness 2D interface elements on the boundaries of the 3D prior austenite 
grains. The basis of the model follows the work of Needleman and Rice [86], Sham and Needle-
man [87], Ashby and co-workers [13], Tvergaard and van der Giessen [11], and more recently by 
Sham and co-workers, e.g., [12]. The current project has integrated these models into the three 
dimensional finite element program WARP3D [14].  Previous reports, e.g., [12] detail this im-
plementation and extensive prior studies that elucidate many features of the model.  The current 
report focuses on summarizing the numerical model (Section 2.1), presenting the recent imple-
mentation improvements (Section 2.2), and mapping the effects of the individual input parameters 
along with recommended values (Section 2.3).  

2.1.1 Cavity	nucleation	and	growth	

The normal separation of the interface-cohesive model includes contributions from (1) the 
growth of existing cavities on the grain boundary, (2) the nucleation of new grain boundary cavi-
ties, and (3) creep deformation in neighboring grains. Figure 2-1 along with Table 2-1 and Table 
2-2 introduce the variables and parameters in the normal traction-separation relationship. The 
separation rate,  !δ , depends on the volumetric growth rate and spacing of cavities on the grain 
boundary. The model assumes the 3D cavities maintain a fixed equilibrium shape with diameter 
2a  and center-to-center spacing between adjacent cavities 2b .  Note that the finite element im-
plementation of this model does not track individual cavities; the diameter and spacing variables 
reflect average values at a given integration point. Cavity nucleation decreases the cavity spacing 
(and increases the cavity density). Cavity growth increases the cavity size. 

Several mechanisms contribute to the formation of grain boundary cavities during sustained 
loading at high temperatures. These include particle cracking and/or debonding, triple point stress 
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concentrations, and grain slip band dislocation pileup at grain boundaries [11]. However, direct 
observation and quantification of cavity nucleation is challenging and thus the specific mecha-
nisms and rates of nucleation remain uncertain. Dyson [15] reports that cavity nucleation is a con-
tinuous process during creep. Dyson further indicates that the rate of nucleation is controlled pri-
marily by strain rates in adjacent grains. Lim [16] asserts that grain boundary sliding does not 
contribute to nucleation in a significant way and that nucleation begins during secondary creep 
such that there is a threshold to the onset of nucleation. Wu and Sandstrom [17] compare several 
sets of experimental observations and models for cavity nucleation in low-alloy power plant 
steels.  For most cases, the cavity density varies linearly with the creep strain, with the slope de-
pendent on the material and testing conditions.  

The nucleation model in the current implementation of grain boundary cavitation, stems from 
the work of Needleman and Rice [86] and Sham and Needleman [87] and the model of van der 
Giessen and Tvergaard, as described in [18]. The van der Giessen and Tvergaard model provides 
continuous nucleation that begins after a stress-strain threshold is met. A rate equation evolves the 
cavity density N, (e.g., cavities/mm2); the nucleation rate is proportional to the creep strain rate 
and, optionally, the grain boundary normal traction (to the power β ). Table 2-3 presents the gov-
erning cavity density rate equation (in terms of the inverse cavity spacing evolution rate,   !b) and 
associated threshold and cavity spacing relationships.  

Once nucleated, cavities grow by a combination of diffusion and creep. Table 2-4 presents the 
traction-separation rate constitutive equations.  The coupled diffusional and creep contributions 
drives the cavity volumetric growth rate,   !V , based on the interface normal traction, nT .  The 

creep contribution considers the stress triaxiality ( )/m eσ σ  and effective creep strain rate 
  
!εe

C( )  in 

the adjacent grains. This requires a nonlocal enhancement to the finite element framework to pro-
vide the cohesive elements integration points with stress and strain information from the adjacent 
solid elements.  Dodds et al. [12] provide the implementation details for this nonlocal procedure.  

Key aspects of the cavity growth model are summarized below.  

• Grain boundary sliding does not explicitly contribute to the cavity growth and nucleation 
equations. Sliding displacements indirectly impact cavity growth by introducing geomet-
ric effects (e.g. triple points) that elevate nearby grain stresses, creep rates and the normal 
tractions acting on grain boundaries. 

• The rate equations for volumetric growth,   !V , reflect fits to finite element results for mod-
els containing discrete voids embedded in a creeping solid over a wide range of triaxiali-
ties and porosities ( )2/a b , see van der Giessen et al. [19,4,5,6,7,8,9,10,13].  

• The volume growth rate expressions assume the creep response in the grains has an power 
law relationship between the stress and strain rate;   !εe ∝σ e

n . The creep exponent, n, ex-
plicitly appears in the   !V  equations. The Norton-Bailey (Section 2.1.3) material model re-
quires this exponent as input. The crystal plasticity model computes an equivalent value of 
n  that changes continuously over the loading history. The nonlocal feature passes n from 
the solid elements to the interface elements.  
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• The  q -function has a modification [12] that accelerates the growth rate once the areal po-
rosity 2( / )a b  exceeds 0.25 . This simulates the interaction and coalescence of adjacent 
cavities. The unmodified model allows tractions normal to the grain boundary to exist at 
porosity levels well beyond those measured experimentally near fractured surfaces. 

• Under reversed, compressive loading, cavities may reduce in size to the limiting initial 
value 0a . 

 
Table 2-1. Variables for cavity nucleation and growth models 

Symbol Description Units 
a  Current cavity radius mm 
b  ½ of current center-to-center cavity spacing mm 

 !δ  GB opening displacement rate 1mm h−⋅  
  !εe

C  Nonlocal equivalent creep rate h-1 
C
eε  Accumulated equivalent creep strain (nonlocal) dimensionless 
L  Rice creep-diffusion interaction length mm 
N  Current cavity number density (per unit area) cavities-mm-2 
S  Non-dimensional stress-strain measure dimensionless 
eσ  Nonlocal equivalent (von Mises) stress  MPa 

mσ  Nonlocal mean stress MPa 
nT  Normal traction acting on GB MPa 

  !V  Cavity volumetric growth rate 3 1mm h−⋅  
 
 

Table 2-2: Constants for cavity nucleation and growth models 

Symbol Description Units 
β  Traction exponent dimensionless 
B  Power-law creep, creep coefficient 1MPa hn− −⋅  
D  Grain boundary diffusion coefficient 1 1 3MPa h mm− −⋅ ⋅  
NF  Nucleation rate constant cavities-mm-2 

m  
Parameter equal to +1 for tensile stressing, and 

 −1 for compressive stressing dimensionless 

n  Power-law creep, stress exponent dimensionless 
IN  Initial cavity number density  cavities-mm-2 

maxN  Maximum value of the cavity number density cavities-mm-2 
ψ  Equilibrium cavity tip half-angle (~70º) radians 
0Σ  Traction normalization parameter MPa 

thrS  Threshold value of S for nucleation onset dimensionless 
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Table 2-3. Rate equations for cavity nucleation model 
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Table 2-4. Traction-separation rate constitutive equations 

   
!δ =

!V
πb2  
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!V
4πh(ψ )a2  
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!VL , if !VL ≥ !VH
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2.1.2 Viscous	sliding	

Table 2-5 presents the rate equations that govern the simple viscous sliding model, with pa-
rameters defined in Table 2-6. This implementation extends Ashby’s model [20] to 3D by consid-
ering shear displacement and tractions on two orthogonal in-plane directions (noted as 1 and 2 in 
the nomenclature) at each integration point. There is a single material parameter, the viscosity of 
an uncavitated grain boundary, 0η , that quantifies the resistance of the grain boundary to sliding 
deformation.  The user may turn on a feature that degrades the effective viscosity as cavities de-
velop and grow.  There are no additional user parameters beyond a flag to turn this degradation 
off and on. When on, the viscosity decreases linearly from 0η  to zero after the porosity reaches 
0.25 (i.e., ( )/ 0.5a b = . 

 

Table 2-5. Rate equations for grain boundary sliding model. 

   Ts1 =ηb
!Δs1  

   Ts2 =ηb
!Δs2  

( )0,    /b sd sd sdf f f a bη η= =  
 

 

Table 2-6. Nomenclature for grain boundary sliding model and physical units. 

Symbol Description Units 

1sT  Shear traction in the 1-direction MPa 

   
!Δs1  Relative slip rate in the 1-direction 1mm h−⋅  

2sT  Shear traction in the 2-direction MPa 

   
!Δs2  Relative slip rate in the 1-direction 1mm h−⋅  

bη  Viscosity function 1MPa h mm−⋅ ⋅  

sdf  Viscosity parameter having range from zero to 
one dimensionless 

0η  Reference viscosity 1MPa h mm−⋅ ⋅  

onset( / )a b  Onset values of /a b  for viscosity reduction dimensionless 
 
 

2.1.3 Norton-Bailey	model	

The Norton-Bailey model is a simple power-law relationship between stress and the creep 
strain rate. Table 2-7 and 2-8 list the governing rate equations and nomenclature used for the ma-
terial properties. The implementation superposes the creep and elastic strain rates; the model re-
quires the typical isotropic elasticity constants and two additional parameters; the creep exponent 
and creep coefficient. The exponent, n , is generally taken as 5 to represent creep controlled by 
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dislocation climb/glide and the creep coefficient, B , has representative values of 15 1810 10− −→  
1MPa hn− −⋅ . Reference [12] provides implementation details.  

 
Table 2-7. Norton-Bailey constitutive equations for grains 

  
!ε ij = !ε ij

e + !ε ij
C + !ε ij

θ  

   
!ε ij

e = 1+ν
E
!σ ij −

ν
E
!σ kkδ ij  

   
!ε ij

C = 3
2

Bσ e
n sij

σ e

,  

3
2e ij ijs sσ =  

   
!εe

C = 2
3
!ε ij

C !ε ij
C  

  
!ε ij
θ =α ij

!θ  
 
 

Table 2-8. Norton-Bailey nomenclature and physical units 

Property Description Units 

E  Grain Young’s modulus MPa 

ν  Grain Poisson ratio dimensionless 

B  Grain creep coefficient 1MPa hn− −⋅  

n  Grain creep exponent dimensionless 

eσ  Equivalent (von Mises) stress MPa 

  !εe
C  Equivalent creep rate 1h−  

  
!σ ij  Stress rates 1MPa h−⋅  

  
!ε ij  Total strain rates 1h−  

  
!ε ij

e  Elastic strain rates 1h−  

  
!ε ij

C  Creep strain rates 1h−  

ijs  Deviatoric stresses MPa 

  
!ε ij
θ  Thermal strain rate 1h−  

ijα  Thermal expansion coefficients o 1C−  

 !θ   
Temperature rate  

oC/s  
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2.1.4 RVE	model	

The modeling approach is based on a RVE (representative volume element) – a volume of ma-
terial comprised of a sufficient number of randomly sized and shaped grains to represent the het-
erogeneous microstructure and nonlinear response of the material of interest.  Figure 2-2 presents 
the RVE, or unit cell, employed for all of the simulations in the current chapter.   

The cubic domain consists of 100 3D cells that represent prior austenite grains. This geometry 
is constructed by Voronoi tessellation via the open source Neper software [21].  Neper also mesh-
es the domain with second-order tetrahedral elements.  Truster’s open source DEIProgram [22] 
then inserts 2D 12-node interface cohesive elements between the grains to define the 467 grain 
boundaries.  Additional details of these programs and their use in generating the RVE are found 
in [12].  

The   X = 0.0 mm ,   Y = 0.0 mm , and   X = 0.0 mm  planes have symmetry boundary condi-
tions. The   X = 0.2 mm ,   Y = 0.2 mm , and   X = 0.2 mm  planes have multipoint constraints to en-
force uniform normal displacement during the simulation while leaving the in-plane displace-
ments unconstrained.   

The creep simulations in this chapter all employ a load-hold strategy.  An applied load on a 
single node on the 0.2 mmY =  plane imposes (via the multi-point constraints) a uniform applied 
uniaxial stress on this plane.  The use of an applied force allows the magnitude of the stress to 
change as the cross-sectional area changes in geometrically nonlinear simulations.  The loading 
history ramps the applied force from 0 to the maximum value (simulation dependent, generally to 
provide an applied stress of 60-200 MPa) over 0.1 h.  This traction is then held at this level for the 
remainder of the simulation (up to 106 h, depending on the traction magnitude).  

The primary results of interest are the so-called cell strain and cell strain rate.  The cell strain 
is taken as the displacement of the loaded surface ( 0.2 mmY = ) in the loading direction (Y) di-
vided by the cell height (0.2 mm).  This strain includes the elastic, creep, and viscous response of 
the grains and grains boundaries. The cell strain rate is simply the time rate of change of the cell 
strain. The simulations also track internal variables to monitor the progress of grain boundary nu-
cleation and cavitation. Physical units employed in all the simulations are: MPa, h, mm, N. For 
the simulations employing the Norton-Bailey model, material properties assigned to the grains 
are: 150,000E =  MPa, 0.285ν = , 5n = , 161.0 10B −= ×  -1MPa hn− ⋅ . 

Extensive previous studies with this RVE have ascertained the following: 

1. Cell response is independent of the loading direction (X, Y, or Z) 

2. The 100 grain model provides a representative response for this grain size and shape dis-
tribution, i.e., an 800-grain model with the same characteristics provide essentially the 
same response to creep loading. 
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3. Cell strains and strain rates, especially during secondary and tertiary creep, are generally 
independent of the time step size (other than the effect of step size on global numerical 
convergence).  

4. The grain size and shape distributions are approximately representative of Grade 91 
PAGs. 

 

2.2 Numerical	Improvements	

Enhancements to the grain boundary cavitation model since the previous update [12] focus on 
algorithmic improvements. The main issues are summarized below, with additional details on the 
problems, and solutions, provided by the following subsections. 

• For some simulations, the global Newton iterations failed to converge for some steps dur-
ing initial loading regardless of timestep size reductions and convergence tolerance relaxa-
tions.  Minor adjustments to the code logic greatly improve these convergence issues. 
With judicious time step sizes and allowing adaptive step size refinement, simulations 
now meet reasonable convergence tolerances for every step until well into the tertiary 
creep phase and the development of full grain boundary failures. Section 2.2.1.1 outlines 
the numerical procedure/logic for the normal traction/separation response of the grain 
boundary cohesive model.  

• Nonrealistic oscillations and noise in the cell strain rate response occurred at early-to-
moderate timesteps for some simulations both with cavitation and without cavitation. Fig-
ure 2-3 demonstrates these issues, for a cell simulation. The yellow spikes occur at time 
step changes if the general grain boundary response in the cell is linear (no active cavita-
tion) and the linear stiffness magnitude is calculated based on continuity at the onset of 
cavitation. Previous work, e.g., [12] use this so-called alg

linK approach (see Section 2.2.1.2.)  
These strain rate spikes along with traction-related numerical problems (see next bullet) 
motivate the change to a user-defined linear stiffness, .u

lin
serK  While this constant linear 

stiffness does indeed resolve some computational concerns, the magnitude can have a 
strong influence on the early response of the cell, including noise level.  In the figure, note 
that the local noise (small timescale fluctuations about a mean) increase as r

lin
useK  increas-

es. The higher stiffness values also lead to a non-physical oscillation on a hundreds-of-
hours timescale.  Section 2.2.1.2 discusses the linear stiffness implementation and values 
in more detail.  

• Oscillations and high magnitudes in grain boundary normal tractions vary with the normal 
stiffness and can produce undesired nucleation and cavitation rates.  The nature and cause 
of these normal traction issues are discussed further in Sections 2.2.1.3 and (Chapter 4). 
These problems are mitigated by (1) limiting the linear normal stiffness (2) setting the 
shear stiffness and normal stiffness magnitudes to similar orders of magnitude and (3) us-
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ing resolved tractions from the adjacent solid elements to control nucleation and cavitation 
rather than the interface element normal tractions.  

• The RVE simulations typically experience global convergence failure before reaching 
strain levels attainable in physical experiments. Modifications to help drive effective cavi-
ty coalescence improve the tertiary response trace somewhat. However, examination of 
the grain boundary failure progression does indicate that the cell response is well into the 
tertiary creep phase before numerical failure, and further progress along the curve actually 
would provide relatively little further information about failure times and mechanisms. 

2.2.1.1 Normal	traction/separation	response	flow	diagrams	

The normal traction/separation response of the grain boundary cohesive model involves as 
much logic and branching as floating point operations.  The current state (open, closed, neutral) 
and state change (opening vs. closing) of the interface, nucleation activity (threshold not met, ac-
tive nucleation, maximum cavity density reached), and cavitation progression (not yet nucleated, 
active cavitation, cavity coalescence) all affect the normal T δ−  response during a time step.  

Figure 2-4 illustrates the logic sequence to determine if the global solution iteration requires a 
full cavitation update or just a linear update at a given interface element integration point. Figure 
2-5 provides the logical structure of a cavitation-based update, although the calculations may in-
dicate that the response of the integration is actually linear (no cavitation) during the global itera-
tion. Figure 2-6 shows the simple steps in a linear update; for which the only branching is based 
on providing a stiffer response to prevent interpenetration of interface elements under compres-
sion.  

2.2.1.2 Grain	boundary	normal	stiffness	

The grain boundary cavitation model defines the relationship between the normal traction and 
the normal opening rate.  Outside of a finite element framework, this cavitation-based relationship 
is sufficient to describe the behavior of a grain boundary.  Before nucleation, there is no normal 
opening and after nucleation the cavitation-based equations (Section 2.1.1) dictate the normal 
opening/traction response.  In the finite element framework, the grain boundary cohesive ele-
ments must have a stiffness that defines the normal traction-opening response at all times, e.g. 
even before cavity nucleation.  Ideally, this stiffness will be large enough that grain boundary 
opening before cavitation is essentially zero, and certainly much smaller than other deformations 
(i.e., the grain boundary response during cavitation and strain in the grains).  However, an overly 
large normal stiffness leads to numerical inaccuracies and convergence problems.   

The approach, until recently, was to compute the linear stiffness of the grain boundary so that 
the stiffness would be continuous at the onset of cavitation.  The stiffness of the cavitation re-
sponse is given Eqn (2.1) 

 
2

4
( , )n q a bdT bK

d D dtδ
= =

⋅
  (2.1) 
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Thus the algorithmic linear stiffness is 

 
2
0 0 0( , )
4

alg
lin

b b
d

K q a
D t

=
⋅

  (2.2) 

For typical (for these Grade 91 studies) parameter values of 0 50 nm,a = 0 60 µm,b =
1 1 315D= 8  MPa m10 h m ,− −− ⋅× ⋅  alg

linK  ranges from 14 M10  Pa/mm when 0.01 hdt =  to 
11 M10  Pa/mm  when 10 hdt = .  

Note the appearance of the time step size, ,dt  in .alg
linK  Figure 2-3 reveals that this can lead to 

the spikes in the cell strain rate.  While these spikes are indeed non-physical and disconcerting, 
there is a more insidious problem with using this computed value for the linear stiffness.   

The top left contour plot in Figure 2-7 reveals the distinct “checkerboard” traction oscillation 
pattern and high traction magnitudes that can develop with high interface normal stiffness 
( )1010  MPa/mm .user

linK =   This is essentially a linear elastic response; nucleation and cavitation are 
turned off and the time scale prevents significant creep strain in the grains (Norton-Bailey model).  
Elements with tensile tractions of order 2,000 MPa are adjacent to elements with compressive 
tractions of the same magnitude.  The applied stress is only 100 MPa so the high traction magni-
tude (20x applied) and oscillating directions (tensile vs compressive) is indicative of computa-
tional inaccuracies.  

A more moderate interface normal stiffness ( )810  MPa/mmuser
linK =  reduces the traction oscil-

lation and nearly halves the maximum traction magnitude, as shown in the upper right contour 
plot.  The tractions on interfaces normal to the loading direction generally have tensile tractions 
with magnitudes typically below 500 MPa.  Nevertheless, the maximum traction magnitudes 
(1,500 MPa) are still larger than realistic.  

A lower interface normal stiffness ( )610  MPa/mmuser
linK =  essentially eliminates the check-

board effect and brings traction magnitudes back down to reasonable levels.  However, a stiffness 
this low leads to large interface openings that dominate the cell response.  The line plot in the 
lower right shows the displacement at the top of the cell during the loading ramp for the three dif-
ferent interface stiffnesses.  For a linear elastic cell with no interfaces and the same grain elastic 
modulus, the cell displacement for 100 MPa applied stress is 0.133 mm.  Interface opening in-
creases the total cell displacement above this no-interface elastic baseline.  The high interface 
stiffness case allows displacements 1.2 times higher than the no-interface baseline.  The interme-
diate stiffness case, with a large improvement in traction behavior, only moderately increases the 
additional cell displacement (1.6 x baseline).  The low interface stiffness however dramatically 
increases the net cell response; displacements are seven times greater than without interfaces.  For 
this set of material, geometric, and loading parameters, a user

linK  of order 107-108 MPa/mm pro-
vides a reasonable balance between artificial interface opening and numerical stability.  

The deformations and stresses discussed above are for simulations with very low sliding vis-
cosity ( )1 MPa h mm100bη

−⋅ ⋅= . This essentially free sliding condition represents worst-case 
conditions; increasing the sliding resistance decreases opening deformation and reducing traction 
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oscillations.  With 6 1 MPa h m10 mbη
−⋅ ⋅=  and 610  MPa/mmuser

linK = , the cell displacement at 100 
MPa is 0.3 mm; still more than double the interface-free value but much lower than with free slid-
ing. 

The results correspond to a cell model with the same grain structure and loading as described 
in Section 2.1.4 but with the finer mesh density.  There are 125,000 nodes and 69,000 solid ele-
ments in the refinement model compared to 25,000 nodes and 10,000 solid elements in the stand-
ard model.  The standard density mesh exhibits similar traction checkboard patterns and magni-
tudes.   

As discussed above, the use of a moderate linear stiffness magnitude to mitigate traction oscil-
lations does introduce additional strain in the cell that can be viewed as a linear-elastic opening of 
the grain boundaries.  Figure 2-8 considers the magnitude of this elastic opening compared to 
other sources of strain in the RVE.  Cavitation is turned off so that all opening response is gov-
erned by the linear stiffness.  The shown curves represent two separate simulations with all inputs 
equal except for the linear opening stiffness.  The dashed lines correspond to 710user

linK =   
MPa/mm; the solid lines to 1010 MPa/mm.  During initial loading (up to 0.1st = ), the total strain 
rate is of order 10-2 h-1 for both simulations, but slightly higher for the 710  MPa/mmuser

linK =  sim-
ulation.  The normal opening rate during initial load is, as expected, 3 orders of magnitude small-
er for the simulation with the 103 times higher stiffness, but because the strain rate in the grain is 
significantly higher during load, user

linK  has only a small influence on the total cell response.  
However, after initial loading, the grain strain rate is purely creep based and drops precipitously.  
The user

linK  term now has a strong effect on the overall strain rate, with total strain rates differing 
by a factor of 5 at 100 h. The opening stiffness also affects the strain rate from grain boundary 
sliding.  As noted in previous studies, grain boundary sliding and opening are geometrically cou-
pled by the tortuous grain boundaries; opening cannot occur if sliding is prevented on adjacent 
but perpendicular boundaries [12].  Conversely, higher sliding rates occur when greater normal 
opening develops stress concentrations at triple points.  The grain strain rate differentiates for 

1 ht > ; the lower grain boundary stiffness increases the grain strain rate, due to the increased 
stress concentrations from more grain boundary deformation.  

With the pre-nucleation normal response of the grain boundary now set by a user-defined pa-
rameter, rather than a parameter based on stiffness continuity, the onset of nucleation can lead to 
anomalies.  Figure 2-9  (top plot) presents the strain rate, by mechanism, for two simulations with 
equal linK values.  One simulation (dashed lines) is the purely linear grain boundary normal re-
sponse (no cavitation), as in the previous figure but out to longer times.  The dashed-dotted lines 
correspond to simulations for which the normal response is linear until nucleation and cavitation-
based thereafter.  The creep strain rates are coincident for these two simulations until nucleation 
begins in some elements, at about 0.6 h.  Once nucleation occurs, the grain boundary opening rate 
drops rapidly and actually becomes negative.  The negative values cannot be shown on a log scale 
but are indicated by the lack of green dash-dot curve from 1h 12 h.t = −   During this time period 
the grain boundaries are adjusting to the much stiffer early cavitation response compared to the 
linear stiffness.  However, as the porosity increases, the cavitation model strain rates catches up to 
and then surpasses the linear model. 
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The top plot represents the two bounding cases; either the response is purely linear (
n linT K δ= , dashed lines in plot) during the simulation or the response is linear until nucleation 

and cavitational (as defined by equations in Table 2-4, dashed-dotted lines in plot) after the nu-
cleation threshold is met.  The lower plot in the figure adds curves for a model that maintains the 
linear response through the simulation and superposes the cavitational response after nucleation.  
The new curves initially coincide with the linear-only curves but transition to follow the cavita-
tion curves up through failure.  The major benefits of this superposition of opening mechanisms 
are (1) improved numerical convergence due to the continuity at the onset of nucleation and (2) 
elimination of the suspect negative grain boundary strain rates that suppress the total strain rate 
during this time frame.  Maintaining the linear response through superposition does not signifi-
cantly influence the tertiary response and time to failure.  This is a good indication that using a 
moderate linear stiffness to improve numerical issues does not alter time-to-failure responses in 
an appreciable way.  

2.2.1.3 Interface	normal	tractions	

Section 2.2.1.2 introduces the occurrence of unstable normal tractions in the grain boundary 
elements that manifest as high magnitudes (up to 20 times higher than the applied stress) and os-
cillating signs between adjacent interface elements.  These problems are particularly severe early 
in a simulation and occur with or without cavitation (i.e., it is an element issue, not a cohesive 
model artifact).  Judicious selection of the normal direction linear stiffness and sliding viscosity 
can significantly reduce the severity of this poor traction behavior.  See Chapter 4 for further de-
tails. 

The erroneously high tractions early in a simulation have deleterious effects on the nucleation 
and growth of cavities.  The normal traction, calculated directly from the interface opening, δ , 
for the current iteration, explicitly appears in both the cavity growth rate and possibly the nuclea-
tion rate (depending on user input parameter β ).  A computed tensile normal traction that is an 
order of magnitude or more higher than it should be artificially accelerates the nucleation, growth, 
and even coalescence of grain boundary cavities.  Computed high magnitude compressive normal 
traction erroneously close existing cavities back to their initial size, possibly in a single time step.  
The spatial and temporal oscillation in these extreme traction values lead to global convergence 
problems with extremely stiff traction/separation response (small cavities, interface compression) 
alternating with very soft response (large and/or closely spaced cavities).  

The grain solid elements stress fields are far more stable than the interface element tractions.  
The nonlocal character of the cavity growth model already requires the stress fields from the ad-
jacent solid elements.  The current framework in WARP3D passes the solid stress fields from the 
previous converged time step into the cohesive model update for the current global iteration.  It is 
a simple extension to resolve the solid element stress fields to compute the traction in the inter-
face normal direction.  The cohesive model computes and then averages this effective normal 
traction from the solid elements on both sides of an interface element.  In a numerically well-
behaved scenario, this solid

nT value and the interface cohesive model traction are equivalent.  In 
practice there may be a large disparity due to the aforementioned problems with the interface 
normal tractions.  The solid

nT  value now drives the cavity size and spacing updates in the code.  
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This greatly improves the global convergence early in the simulations and eliminates erratic cavi-
ty nucleation and growth. 

Figure 2-10 compares the normal tractions from resolved solid element stresses to normal 
tractions from the interface opening ( )δ .  All six contour plots correspond to the same time point 
(end of ten step, one hour ramp to 100 MPa applied stress on 0.2 mmY = RVE surface).  The 
contour limits (-200 to 200 MPa) are the same in the six plots to emphasize the differences due to 
the interface cohesive model linear stiffness (1012 to 106 MPa/mm) and method of calculating the 
normal traction.  The displacements are multiplied by a factor of 50 in all plots; this highlights the 
effect of the linear stiffness on the cell deformation.  As noted in the line plot of Figure 2-7,

610 MPa/mmlinK = allows much more grain boundary opening, and thus total cell deformation 
than 810 MPa/mmlinK = .  A further increase in linK  to 1210 MPa/mmreduces the cell deformation 
but much less dramatically.  Note that these simulations all use a very low sliding viscosity 

1MP( a1 h mm )00 bη
−⋅ ⋅= that essentially allows free sliding.  This can lead to much larger grain 

boundary interface deformation than when the viscosity is high and the lack of sliding geometri-
cally restricts interface opening.  Thus, the effect of linK  on the deformation shown here is ex-
treme.   

When the interface tractions come from resolved solid element stresses, the maximum ratio of 
normal traction magnitude to applied stress is generally less than 2.0 and always less than 4.0, for 
the range of linear stiffnesses used.  Indeed, with 1210 MPa/mmlinK = the maximum tensile solid

nT  
is 202 MPa and the maximum compressive solid

nT  is -94 MPa.  This is in stark contrast to the trac-
tion range based on interface opening (24,000 to -30,000 MPa!), and the contours are smooth (not 
oscillating element by element).  Normal tractions are generally tensile on interfaces perpendicu-
lar to the loading direction, neutral on interfaces parallel to the loading direction, and compressive 
at triple points, as expected.   

With a decrease in the interface linear stiffness to 108 MPa/mm, the resolved solid element 
stress based interface tractions maintain the same well-behaved appearance as with the higher 
stiffness.  The tractions are somewhat larger however (general between 200 and -200 MPa but 
with maximum magnitudes reaching 380 MPa in tension and 260 MPa in compression).  This is 
because the softer response of the interfaces allows more local deformation and thus higher stress 
concentrations.  The range of interface opening based normal tractions (1,300 to -1,500 MPa) is 
still nearly an order of magnitude higher than for the resolved solid stress tractions for this same 
linear stiffness. 

Reducing linK  to 106 MPa/mm leads to more widespread high-magnitude tractions (from re-
solved solid stresses) although the maximum tension is similar to the 810 MPa/mmlinK = case 
(380 MPa) and the maximum compression somewhat lower (-190 MPa).  The solid-stress based 
normal tractions and interface opening based normal tractions are very similar in both magnitude 
and distribution for this low interface normal stiffness case.  However, as linK  in the range of 107-
108 MPa/mm keep interface strains at least an order of magnitude smaller than the elastic re-
sponse of the grains, the use of solid

nT  along with linK  above 106 MPa/mm achieves a reasonable 
balance between competing numerical issues. 
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2.2.1.4 Failure	during	tertiary	creep	

The simulations with cavitation reproduce the onset of tertiary creep with an upturn in the 
strain rate approaching a vertical asymptote indicative of cell failure.  This is a numerically chal-
lenging regime however as the stiffness of cohesive element integration points undergoing cavity 
coalescence goes to zero.  The global Newton iterations typically show oscillatory behavior in 
which the successive iterations bounce between two small residual values.  As the failure pro-
gresses, further numerical progress (additional time steps) may require relaxation of the conver-
gence tolerance.  Nevertheless, the simulations generally progress far enough up the failure re-
sponse that the time-to-failure can be quantified with confidence.  Indeed the asymptotic charac-
ter of the strain rate during tertiary creep means little further information would come from trac-
ing the response much further. 

One algorithmic change during the current project year did improve numerical performance 
during tertiary creep. The stiffness of the cavitational response depends on many factors but the 
largest contribution to the change in the stiffness as cavities grow is the q-function (see Table 
2-4). As described in [12], the numerical implementation modifies the base version of the func-
tion to (1) force an effective cavity coalescence as the porosity increases and (2) prevent the inter-
face stiffness from getting so low that numerical issues arise.  This modification transitions the 

value of q to a minimum value ( minq , set in the source code) as the porosity,   f = a / b( )2
, reaches 

0.49, i.e.,   a / b = 0.7 .  This is done by substituting a third order Hermitian polynomial   qmod( )  for 

the baseline q function (given in Table 2-4) for 
 
fi < f ≤ f j  such that   qmod ( fi ) = q( fi ) ,  

  q 'mod ( fi ) = q '( fi ) , 
  
qmod ( f j ) = qmin , and 

  
q 'mod ( f j ) = 0 .  The transition interval is hardcoded to 

  fi = 0.25  and   fi = 0.49.  The value of   qmin is somewhat arbitrary. Previously,   qmin  was 10-3; about 
half the value of the base function at   a / b = 0.9 . This value allowed a swift but graceful failure of 
simple two-grain tests. However, it may prevent the interface stiffness from reaching a failure 
state with essentially zero-magnitude normal tractions. 

Figure 2-11 examines the effect of minq on RVE simulations.  The only difference between the 
three sets of results in the figure is the value of minq ; ranging from 10-3 to 10-9.  The cell strain 
rates and strains are coincident until near the end of the simulations.  With 3

min 10q −= , the global 
solution procedure fails to converge around 12,800 h with strain rate of 5 1102.2 h− −×  and a total 
cell strain of 6%.  A minq  of 10-6 allows the simulation to proceed a bit further before numerical 

failure to 14,500 h with a much greater strain rate ( )4 116 h02.  − −×  and significantly more cell 

strain (26%).  Another reduction in minq  to 10-9 allows the simulation to reach 43% total strain 
and 4 112 h05.  − −×  strain rate with only a small increase in time to 14,800 h.  Thus there is an addi-
tional 2,000 h on the time-to-failure (14%) by lowering minq  from 10-3 to 10-9, but only an addi-
tional 300 h (2%) comes from minq  decreasing from 10-6 to 10-9.  These simulations employ the 
NB model for the grain response and linear deformation mechanics.  

The crystal plasticity model (Chapter 3) vastly increases the computational complexity com-
pared to the simplistic Norton-Bailey model.  While details of the interactions between the CP 
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and grain boundary cavitation model are left for later chapters, this section briefly discusses time-
to-failure issues based on the simulations with the CP model. 

Figure 2-12 shows strain rate histories for simulations employing the CP model for grain re-
sponse along with the full cavitation model on the grain boundaries.  Parameters are the same for 
the three simulations except for the applied load (100, 120, and 140 MPa).  The figure includes 
test data at these loads from Kimura et al., [23] to indicate the expected behavior in tertiary creep 
along with experimentally attainable strain rates.  These simulations are representative; Chapter 6 
explores parameter calibration and nuances of the interactions between the grain and grain 
boundary responses.  

For the 140 MPa simulation numerical failure occurs at 3,300 h, with 2.4% total strain and 2% 
area reduction.  At this point, seven full grain boundaries (all elements on the boundary) have 
reach an /a b  ratio of at least 0.9. Figure 2-13 (a) shows the cell deformation (5X displacement 
magnification) at grain stress (in the loading direction, Y) at the last time step.  The grain bounda-
ry opening is clear and indicates the formation of at least one failure surface extending over most 
of the cell.  While the total cell strain is relatively low (compared to that achieved with some of 
the Norton-Bailey simulations), cell failure is well underway.  

The 120 MPa simulation terminates at 8,200 h with a total strain of 2.1% and two full grain 
boundaries with / 0.9a b > .   While this is slightly less strain and grain boundary “failure” than at 
the termination step for the 140 MPa model, the extent of grain boundary separation is similar. 
Figure 2-13 (b) presents the cell deformation at the termination step for the 120 MPa simulation; 
it is nearly indistinguishable from the 140 MPa case. 

The extent of the 140 MPa and 120 MPa simulations reflect several adjustments to time step 
sizes and global convergence tolerances to advance the solution as far as possible (while main-
taining reasonable accuracy).  The 100 MPa simulation did not undergo these refinements and 
thus incremental increases in strain rate and total strain may be possible but significant gains 
without algorithmic changes are unlikely.   

Figure 2-14 confirms that the normal tractions in the failing grain boundary elements do in-
deed go toward zero, as expected.  The figure only shows cohesive elements with / 0.9a b > .  
Tensile tractions are less than 10 Pa and compressive traction magnitudes are less than 10 MPa.  
Invoking an element extinction feature that removes failed elements from the simulation may im-
prove the ability to reach higher cell strains.  

2.3 Parameters	

The current form of the grain boundary interface-cohesive model provides a flexible frame-
work for describing the normal traction/opening response.  The model requires up to eighteen in-
put parameters; six Boolean flags and 12 numerical constants.  Each grain boundary may have its 
own unique set of input parameters.  Table 2-9 and Table 2-10 briefly define the required parame-
ters.  The typical values presented correspond to the simulation of Grade 91 steel.  An overview 
of the range of normal response is given below, and then the following subsections examine the 
numerical parameters in more detail. 

Figure 2-15 compares the cell response (strain rate history) for several different general grain 
boundary opening response definitions.  The dashed blue line that forms the lower bound repre-
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sents the Norton-Bailey model creep response of the grains in uniaxial loading; no elasticity and 
no grain boundary deformation;   !εc = Bσ n .  The solid red line maintains this model for the grains, 
but with elasticity included; note the much higher strain rate (10-2 h-1) during the loading ramp 
( 0.1 h)t > .  The grain boundary opening is linear-elastic (include cavity growth = F) and has high 
resistance to sliding 1 12  MPa h( 10 mm )bη

−⋅ ⋅= .  The cell strain rate transitions from the high val-
ue during loading to the constant Norton-Bailey creep rate over 1,000 h.  Note that both of these 
bounds are dictated purely by the grain response.  The high viscosity prevents not only tangential 
grain boundary sliding but also geometrically restricts grain boundary normal opening, despite the 
moderate interface normal stiffness.   

The solid green line represents essentially free sliding 2 1 MPa h( 10 mm )bη
−⋅ ⋅= .  The strain 

rate during the loading phase doubles relative to the no-sliding case.  The strain rate drops several 
orders of magnitude immediately after the reaching full load (i.e., when /appliedd dtσ  goes to 0).  
However, by the end of the simulation at 30,000 h (end of load steps), the strain rate has not 
reached the grain-only base line.  This indicates that grain boundary deformation continues, de-
spite the lack of cavitation.   

The blue solid line corresponds to an intermediate sliding viscosity 6 1 MPa h( 10 mm )bη
−⋅ ⋅= .  

This magnitude of sliding viscosity provides the smoothest grain boundary deformation, as ex-
plained in Chapter 4.  The strain rate during loading is closer to the no-sliding case than the free 
sliding case while during most of the hold time ( 20 h)t < , the cell strain is indistinguishable from 
the free sliding case.  For 0.1 h 20 ht< < , the intermediate sliding viscosity case produces a 
higher cell strain rate than seen with either free sliding or no sliding.  This viscosity is not so high 
as to prevent all grain boundary deformation (as for the no-sliding case) and the allowed normal 
deformation and proportional tangential tractions lead to higher stress concentrations than for the 
free sliding case.  As the grain boundaries deform, the stress concentrations relax and the system 
returns to free-sliding conditions. 

The magenta dashed line includes cavity growth but not nucleation (include cavity growth = 
T, include nucleation = F).  From 0t =  the cavities may begin to grow (from size 0a ) but the 
cavity density does not change during the simulation.  The cell response is indistinguishable from 
that of the no-cavitation case until 30,000 ht > .  After this time, the cell strain rate begins to ac-
celerate. If the initial cavity size and/or initial cavity density was larger the distinction between 
cavitation and no-cavitation would be apparent earlier in the simulation.   

The final curve in the plot allows cavity nucleation (include nucleation = T).  The grain 
boundary normal response is linear-elastic until the cavity nucleation threshold is met.  When the 
threshold is reached at an integration point, the integration point normal response immediately 
includes the effects of cavities with density IN and size 0a .  Under sustained tensile loading, cav-
ities nucleate and growth continuously until meeting a bound (maximum cavity density or cavity 
coalescence). This curve represents the full interface-cohesive response to represent PAGB de-
formation in Grade 91 steels; tangential sliding, nucleation and growth of cavities when sufficient 
deformation accumulates in the surrounding material, and continuous cavity nucleation and 
growth reducing capacity of grain PAGBs to carry tractions leading to local microcrack for-
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mation.  The set of parameters stated in Figure 2-15 are the baseline of the parameter study pre-
sented below; unless otherwise stated these values remain in effect for the rest of the chapter. 

 

Table 2-9: Boolean Input Pameters for Interface-Cohesive Model 

Parameter name Description 
Typical 
Value 

degrade shear viscosity 
 

If T, reduces resistance to sliding as cavities coalesce and 
consume interface. If F, the shear viscosity remains equal to 
the constant user-input value during the simulation. 

T 

use VNNT equations 
 

If F, reverts to simpler model for cavity volumetric growth 
by creep, see [12]. If T, uses the equations in Table 2-4. 

T 

modify the q-value 

If T, drives cavity coalescence when a porosity of 
( )2 5/ 0.2a b = is reached by transitioning from the q-
function in Table 2-4 to a low value ( )minq . If F, the basic q-
function in Table 2-4 is used for all porosities. 

T 

include nucleation 
 

If F, cavities are present and may grow from beginning of 
simulation but no new cavities form. If T, cavities nucleate 
(and then grow) only after a local stress-strain threshold is 
met. 

T 

include cavity growth 
 

If F, interface normal response is purely linear-elastic, 
controlled only by the input linear stiffness. If T, cavity 
growth may occur, depending on nucleation status. 

T 

compute Tn  from solid 
elements 
 

If T, the output normal traction for post-processing, is based 
on the stress fields in adjacent solid elements. This flag does 
not alter calculations during solution. If F, the output normal 
traction for post-processing comes from the interface element 
displacement jumps (opening).  

F 
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Table 2-10: Numerical Input Parameters for Interface-Cohesive Model 

Parameter Name Description Typical Units 
Typical Value 
(or Range) 

a_0 
 

initial cavity radius, 0a   mm 5 x 10-5 

b_0 
 

half initial distance between cavities, 

0b   
mm 6 x 10-2 

eta_b 
 

sliding viscosity, bη   
1MPa h mm−⋅ ⋅  106 

D Diffusivity, D 
1 1 3MPa h mm− −⋅ ⋅  1013 to 1016 

n 
Creep exponent n (only used on 1st 
load step, thereafter the adjacent solid 
elements pass in an effective value) 

unitless 5.0 

psi_angle (degrees) Equilibrium cavity tip half-angle, ψ   degrees 75 
sigma_0 Traction normalization parameter, 0Σ   MPa 100 
F_N / N_I Nucleation rate (normalized), /N IF N   unitless 103 to 105 

N_max / N_I 
Maximum cavity density (normalized), 

/max IN N   
unitless 

1 (no change in 
cavity density ) 
to 106 
(unlimited 
cavitation) 

nucleation stress 
exponent 

Set nucleation rate dependence on 
normal traction, β   

unitless 
0 (nucleation 
independent of 

nT ) to 2 

compression multiplier 
Stiffened response factor to avoid 
interface interpenetration, m 

unitless 10 

linear stiffness 
Elastic normal traction/separation 
response (needed for computational 
stability), linK   

MPa/mm 107-108 
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2.3.1 Initial	cavity	radius		

An earlier study [12] finds that the initial cavity size, 0a , has a very modest effect on the time-
to-failure for values less than 500 nm.  Figure 2-16 confirms this observation for the current form 
of the cavitation model.  Indeed, the strain rate histories are indistinguishable for initial cavity ra-
dii of 50 nm and 500 nm (magenta and green curves, top plot).  The middle plot in the figure, 
which shows the average cavity size evolution, demonstrates that the initially smaller cavities 
grow faster and eventually nearly catch up to the initially larger cavities.  

A study of experimental results indicates a reasonable final cavity radius for Grade 91 steel is 
2-7 µm.  At simulation failure during tertiary creep, the average calculated cavity radius is 1µm
and the maximum cavity radius is 3µm,which agree well with the experimental findings. 

2.3.2 Initial	cavity	spacing		

The grain boundary opening rate is proportional to the square of the cavity spacing; decreas-
ing b  by a factor of ten increases the grain boundary opening rate by a factor of 100.  The spac-
ing also influences the cavity volumetric growth rate,   !V .  An earlier examination of the effect of 
the initial cavity spacing [12] reveals a dramatic effect on the strain rate history.  That study did 
not include nucleation; the cavity spacing remains constant throughout the simulation.  

Figure 2-16 demonstrates the strong role the initial cavity spacing plays on the strain rate 
when nucleation of new cavities is included.  Halving the initial cavity spacing from 0 µm60 b =  
to 0 µm30 b =  cuts the lifespan from 11,000 h to 4,500 h.  The middle plot indicates that the cavi-
ty size evolution is essentially independent of the spacing, until cavity coalescence sets in and the 
growth rate accelerates.  The bottom plot shows the evolution of the average cavity spacing.  The 
average spacing is fairly constant for the first few hundred hours, before nucleation is widespread. 
As more grain boundaries accumulate enough creep strain to nucleate cavities the cell average 
rate of decrease in cavity spacing becomes linear, as expected based on the evolution equation 
when the strain rate is constant (for these 0β =  simulations; i.e., no traction contribution to nu-
cleation).  

Changing the initial cavity spacing changes the initial cavity density, IN , and thus the nuclea-
tion rate parameter NF  because the user specifies /N IF N .  Of course, the /N IF N input can be 
modified to maintain constant NF  for different values of 0b .  This would, however, change the 
nucleation threshold, /I NN F  (see Table 2-3).  Thus for constant NF  a decrease in the initial cavi-
ty spacing (increase in initial cavity density) increases the nucleation threshold (more strain must 
accumulate before cavities nucleate).  

Experimental measurements with Grade 91 steel indicate a center-to-center cavity spacing 
(2 )b  at failure of 30 to 70 µm,  [12].  The simulation with 0 60 µmb = evolves to an average cen-
ter-to-center cavity spacing at failure of 52 4 µm,avgb = with a minimum (among all integration 
points) of min2 7 µm.b =   The simulation with 0 30 µmb = leads to smaller final sizes; 
2 23 µmavgb = and min2 2 µm.b =   The computed average spacings are thus reasonable and indeed 
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the experiment values are based on average number of cavities in a viewing area and not cavity-
by-cavity measurements. 

2.3.3 Sliding	viscosity			

Figure 2-15 and the associated discussion at the beginning of Section 2.3 compare the cell 
strain rate history for three different values of the sliding viscosity, in the absence of grain bound-
ary cavitation.  Figure 2-17 examines the decomposition of the total strain rate into contributions 
from grain boundary opening, grain boundary sliding and grain deformation. The no-sliding case 
in the top plot actually has some sliding because the viscosity is not infinite though it is at least 
two orders of magnitude smaller than the grain response.  The total strain rate is set by the grain 
strain rate during active loading and up through 1 ht =  and for 20,000 ht > .  At intermediate 
times, the opening deformation controls the total strain rate but with sliding suppressed the open-
ing rate diminishes because of geometric locking.  This locking prevents stress concentrations and 
thus grain strain rate is that of a continuum Norton-Bailey response.   

The free sliding case (middle plot) exhibits a much larger sliding contribution to the total 
strain rate than the no-sliding simulation.  Cell strain from sliding is actually somewhat greater 
than all other components for 50 ht < .  Both sliding and opening decrease as stress concentra-
tions are relieved by the deformation, without cavitation to drive continued interface deformation.  
The grain deformation rate also decreases with time, but more slowly than the grain boundary de-
formation mechanisms.   

For the intermediate viscosity case, the bottom figure reveals sliding drives the total cell strain 
rate early in the simulation.  The sliding deformation and shear tractions also increase grain 
boundary opening and grain deformation rates during this transient phase.  Ultimately though the 
opening deformation goes to zero (no cavitation) and grain boundary sliding and grain defor-
mation decrease too, albeit slowly.  As discussed in Chapter 4, intermediate viscosity values, like 
the 6 1 MPa m1 h0 m −⋅ ⋅  used here, minimize numerical problems with the interface elements and 
the increase in the early strain rate, relative to a free-sliding model, improves the model’s ability 
to fit the primary creep phase to experimental data. 

2.3.4 Diffusivity			

A study of experimental measurements, see [12],  concludes that the diffusivity may range 
from 13 16 1 1 310  to 10 MPa h mm− − − −⋅ ⋅  for Grade 91 steels, with minor changes in Cr content caus-
ing relatively large changes in diffusivity.  Figure 2-18 investigates the effect of the diffusivity on 
the cell strain rate, cavity growth and cavity density. The magenta dashed curves and blue solid 
curves represent an order of magnitude change in the diffusivity.  The magnitude of the diffusivi-
ty does not affect the cell strain rate until about 100 ht = , after which the higher diffusivity drives 
earlier tertiary creep and failure.  Faster cavity growth, as measured by the maximum cavity size 
among all integration points (middle plot), actually begins quite early ( )2 ht = .  The maximum 
cavity size in the higher diffusivity simulation is generally twice that of the smaller diffusivity 
case.  The evolution of the maximum cavity density (bottom plot) does not differentiate until 100 
h, when the higher diffusivity case actually falls behind the lower diffusivity case.  However, af-
ter 3,000 h the higher diffusivity case sees its cavity density increases rapidly during the tertiary 
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creep phase.  This is a challenging parameter to calibrate; there is wide range in values from ex-
perimental data and yet the model is quite sensitive to these order-of-magnitude changes.   

2.3.5 Cavity	nucleation	rate	and	threshold	

The nucleation threshold is the inverse of the input /N IF N  parameter; higher /N IF N  values 
reduce the strain (and/or normal traction, depending on nucleation exponent β ) at which cavity 
nucleation begins.  Higher values of /N IF N  also increase the rate of nucleation.  Figure 2-18 
compares the effect of the nucleation rate and threshold parameter.  The green and magenta 
curves represent an order of magnitude difference in this input parameter.  As expected, the high-
er /N IF N  (green curve) leads to earlier failure because cavities form earlier and more rapidly.  
The increase in cavity density (bottom plot) is dramatic; cavities nucleate almost immediately and 
growth rapidly.  Integration points begin to reach the maximum cavity number density (user in-
put, 1,000 IN  here) at 1,000 h for the 52/ 10N IF N = ×  simulation but not until right before failure 
around 4,000 h for the 42/ 10N IF N = ×  simulation. The effect of /N IF N  on the cavity growth is 
much smaller (middle plot).  The larger /N IF N  nucleates cavities earlier, thus the initial increase 
in the maximum cavity size (in these simulations, cavities cannot grow until the nucleation 
threshold is met).  The delayed onset of cavity growth with the smaller /N IF N  is quickly over-
come however and the two simulations have similar maximum cavity sizes for a few hundred 
hours. Thereafter, with the larger nucleation rate the porosity reaches a critical level (onset of coa-
lesence) earlier, driving more rapid cavity growth. Note that an order of magnitude increase in 
/N IF N  has a very similar effect on the cell strain rate as an order of magnitude increase in the 

diffusivity although /N IF N  affects this change through the cavity spacing and the diffusivity 
through the cavity size.  

2.3.6 Maximum	cavity	density			

The maximum cavity density ( )maxN , as a multiple of the initial cavity density ( )IN , may be 
user-limited or effectively bounded only by cavity coalescence. The maximum theoretical value 
of /max IN N  is ( )20 0/b a .  This bound is based on (1) the maximum value of /a b  is 1.0 and (2) 
the minimum value of a  is 0a .  For 0 50 nma =  and 0 60 µmb = , the theoretical bound for 

/max IN N  is 61.4 10× ; i.e., the cavity density may increase by a factor of more than a million.  Of 
course, this bound is neither physically realistic nor numerically attainable.  The porosity limit of 
1.0 is approached both as b  decreases and a  increases; thus the average cavity volume increase 
limits the number of cavities that may nucleate.   

Figure 2-19 examines the effect of the /max IN N input parameter, over a range that varies 
from 10 to 1,000.  The initial cavity density is 88 cavities/mm2. With / 1,000max INN = , the strain 
rate (upper left plot) reaches a minimum around 2,000 h and failure occurs at 10,000 h.  Decreas-
ing /max IN N  to 100 does not have much effect on the time to minimum strain rate but the time to 
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failure triples to 30,000 h.  With /max IN N  set to 10, the minimum strain rate occurs around 
50,000 h and failure has not yet occurred by the end of the simulation at 200,000 h.   

The upper right figure tracks the evolution of the maximum computed cavity density.  With 
the imposed limit of 10/max INN = , one or more grain boundary integration points reach the 
maximum cavity density after only 20 hours; all further grain boundary opening occurs only 
through expansion of existing cavities.  Indeed, even the average cavity density (not shown) be-
comes essentially constant after 2,000 hours.  With /max IN N  of 100, the limit is first reached at 
2,000 hours, although the average density does not start to level off until 10,000 hours. Setting 

/max IN N  to 1000 does not constrain nucleation for this set of material, loading, and geometric 
inputs.  None of the integration points reach the imposed cavity density by the end of the simula-
tion (cell failure).  At least one integration point approaches the nucleation limit, with a maximum 
/ IN N  greater than 800 but the average / IN N  at failure is only 100.  A simulation with 

61/ 0max INN =  confirms this effect; the higher nucleation limit yields identical results to the 
/ 1,000max INN =  case because the lower value does not limit nucleation.  Thus the results with 

61/ 0max INN =  are omitted from the plots for clarity.  

The lower left figure demonstrates the effect of the cavity density limit on the cavity size.  As 
expected, the curves are coincident until about 1,000 hours; cavity growth is unimpeded by the 
cavity density.  After 1,000 hours, the cavity density for the / 1,000max INN =  case first increases 
the cavity volumetric growth because the diffusion-based cavity growth rate increases as the po-
rosity increases.  However, the cavity density ultimately limits the cavity size as the porosity limit 
of 1.0 is reached. If N reaches maxN  before coalescence the maximum value of 0/a a  is 

( )0 0// /1 max IN aN b× .  The 10/max INN =  and 100 cases reach the respective 0/a a  limits of 

120 and 380.  

The sharp increases in cavity size (at 5,000, 20,000 and 100,000 hours for the three different 
cases) arise as the porosity reaches the level that triggers coalescence accelerated rapid cavity 
growth.  The lower right figure presents the percentage of grain boundary elements with 
/ 0.5a b > .   The curves begin at the first time point for which at least one grain boundary ele-

ment has / 0.5a b > .  Note that these time points correlate with the nearly vertical segments of the 
( )0/ max
a a  curves in the lower left figure.  

The values of /max IN N  in the study explore the full range of the role of this parameter.  The 
values correspond to maximum cavity densities from 880 to 88,000 cavities/mm2 and minimum 
cavity spacing ( 2 minb ) from 4 to 40 µm.   The higher end of this range correlates well with rec-
ommendations based on literature study of experimental data on Grade 91 specimens, which indi-
cates final cavity spacing of 30-70 µm, but acknowledges that reported values are average values 
and not necessarily from the failure surface which may indeed have smaller final cavity spacing 
before coalescence and failure.  

2.3.7 Traction-influenced	nucleation			
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The results and discussion above related to nucleation parameters focus on simulations for 
nucleation that depends on strain (and strain rate) but not directly on normal traction; i.e., 0β = .  
As summarized in [12], while some experimental results support this 0β = model, van der Gies-
sen and colleagues, e.g., [11] employ 2β = .  When 0β ≠ , the traction normalization parameter, 

0Σ  affects the onset and rate of nucleation, in constrast to 0β =  parameter sets for which the 
value of 0Σ  is irrelevant.  

Dodds et al., [12] demonstrate that using 2β =  can focus nucleation and cavitation (and thus 
failure) to grain boundaries perpendicular (or nearly so) to the loading direction.  The current 
work investigates the role of this parameter in differentiating the creep response for different ap-
plied stress levels.  Chapter 6 provides much more detail on simulating a wide range of applied 
stresses but it is introduced here to demonstrate the role of these interface-cohesive material prop-
erties.  

Figure 2-20 present cell strain histories at multiple applied stress levels (100-160 MPa) for 
both 0β = and 2β =  cohesive model parameter sets.  Note that these simulations use the crystal 
plasticity model for the grains rather than the Norton-Bailey model.  Chapter 3 and 6 provide 
much more information about the crystal plasticity model, and its interaction with the grain 
boundary cohesive model.  Here, let it simply serve as representative behavior in the current dis-
cussion of traction effects on nucleation.  The cohesive model parameters are consistent between 
the two sets of results also, except for the nucleation traction exponent .β   

The top plot shows the 0β =  simulation results along with experimental data at the same ap-
plied stress levels.  The simulation results at the lower three stresses clearly reach tertiary creep 
and imminent failure.  The 160 MPa case fails prematurely due to convergence difficulties with 
the CP model, but close examination of the results indicates that the strain rate has begun increas-
ing. While the simulations reproduce the key features of the experimental data, there are discrep-
ancies in the tertiary creep fit.  With  0β = , the lower the applied stress the earlier the simulation 
predict cell failure with respect to the experimental data.  Tweaking the parameters to better fit 
the low stress data has a detrimental effect on the higher stress simulations; the time-to-failure 
becomes longer than the measured result.  Setting 2β =  (lower plot) improves the simulations 
ability to fit the experimental data over the range of applied stresses by providing more differenti-
ation based on the magnitude of the grain boundary tractions.  With 2β = , nucleation occurs ear-
lier and faster for higher tractions than lower tractions, for the same strain and strain rate.  

2.3.8 Summary	

The grain boundary cohesive model provides the following functionality for simulating the 
phases of creep deformation.  

• Early grain boundary viscous sliding leads to stress concentrations at triple points that en-
hance strain rates during the primary creep phase relative to simulations without grain 
boundary sliding or with free sliding.  As continued sliding relaxes these stress concentra-
tions, creep strain rates diminish and the cell settles into secondary creep.   
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• The nucleation threshold prevents appreciable cavity formation and growth until sufficient 
strain has accumulated on a grain boundary.  This allows the secondary creep regime to be 
governed almost entirely by grain deformation.   

• Grain boundary cavitation drives the tertiary creep phase and cell failure.  The initially 
slow cavity nucleation and growth rapidly accelerates as cavities coalesce, eliminating the 
traction (both normal and tangential) carrying capacity of a grain boundary. 

Some of the parameters are based on experimental measurements of the microstructure alone 
while other parameters depend on final or history dependent measurements.  Diffusivity and the 
initial cavity spacing and size can potentially be measured from as-delivered specimens.  The 
RVE response is independent of the precise value of the initial cavity size, at least within a rea-
sonable range based on actual microstructural measurements.  However, the time-to-failure is 
quite sensitive to both the diffusivity and initial cell spacing and the experimental data support 
sizable ranges in these parameter values.   

The four nucleation parameters provide significantly flexibility to calibrate the interface-
cohesive model.  The nucleation threshold and rate parameter, NF , the maximum cavity density 

maxN  , and the traction-inclusion parameter β  can strongly affect the minimum strain rate, the 
onset of tertiary creep and time-to-failure for a given set of microstructurally-based 0a  , 0b  , and 
D  values. Estimates of maxN  and β  potentially can be obtained from post-failure microstructural 
measurements by examining the variation of cavity densities based on the grain boundary orienta-
tion with respect to the loading direction.  This leaves NF  as the sole cavitation parameter without 
a history-independent microstructural basis (noting that NF  and 0Σ  are essentially a single pa-
rameter; appearing always as 0/NF

βΣ  ).  Experimental determination of NF  would require meas-
urement of the onset of cavity nucleation or changes in cavity density under continued loading.  

The cohesive interface model, with cavity nucleation and growth defining the normal traction-
deformation response and linear viscous behavior for the tangential response, effectively repre-
sents the behavior of PAGBs in Grade 91 steels.  Numerical accuracy and stability improvements 
in the cohesive model, and in the crystal plasticity model, allow these microstructure and mecha-
nism-based responses to trace the creep response through all three phases up through microcrack 
formation.  Future improvements would include end-of-life modeling changes (e.g., element ex-
tinction) and using additional alloy-specific test data to aid parameter calibration. 
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2.4 Chapter	figures	
 
 

 

Figure	2-1.	Concept	of	grain	boundary	sliding	and	cavity	nucleation/growth	model	using	a	cohesive	
traction-separation	relationship	and	3D	interface	finite	elements.		
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Figure 2-2. 3D RVE model for simulating creep failure of Grade 91 steels. 
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Figure 2-3. Effect of grain boundary cohesive model linear stiffness on RVE strain rate noise and 
non-physical oscillations.  
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Figure 2-4. Grain boundary cohesive model normal traction ( )nT  update procedure overview  
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Figure 2-5. Grain boundary cohesive model normal traction update procedure with (potentially) 
active cavitation 
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Figure 2-6. Grain boundary cohesive model normal traction update procedure without active cavi-
tation, i.e., linear update procedure. 
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Figure 2-7. Effect of linear stiffness on traction oscillations and cell displacement.  Contour plots 
show grain boundary normal traction values at end of 10 step loading ramp to 100 MPa uni-
axial applied stress in 0.1 h for different interface normal stiffnesses.  Line plot in lower 
right shows the displacement of the RVE surface ( )0.2 mmY =  during the load ramp. Grain 
boundary opening response is linear elastic (no cavitation)  and tangential response is free 
sliding, 2 1 MPa h m10 mbη

−⋅ ⋅= . 
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Figure 2-8. Strain rate decomposition into grain boundary opening (green), grain boundary sliding 
(magenta), and grain deformation (blue) contributions for two linear stiffness values.  RVE 
model with 140 MPa applied stress, linear-elastic grain normal opening response, 

6 1 MPa h m10 mbη
−⋅ ⋅= .   
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Figure 2-9. Grain boundary normal opening model (a) linear-only response (no cavitation) com-
pared to model with immediate transition from linear to cavitation-based response at nucle-
ation and (b) opening model that maintains linear response but superposes the cavitational 
response after nucleation shown along with the responses shown in (a) above. RVE model 
with 140 MPa applied stress, 6 1 MPa h m10 mbη

−⋅ ⋅= , 7  P mm10 M a/linK = . 
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Figure 2-10. Grain boundary normal tractions. Linear-elastic solid and interface opening response, 
grain boundary opening tangential response is free sliding, ( )2 1 MPa h m10 mbη

−⋅ ⋅= , 100 
MPa applied stress on top surface. 50X displacement magnification. (a) tractions computed 
from adjacent solid element stress fields and (b) tractions computed from interface opening 
(delta). 

  

 
  

(a) 𝑇! from solid element stress fields 

(b) 𝑇! from interface opening (𝛿) 



FY17	Status	Report	on	the	Micromechanical	Finite	Element	Modeling	of	Creep	Fracture	of	Grade	91	Steel	
September	2017	
 

ANL-ART-95	 42	 	

  
Figure 2-11. Effect of minq  on simulation failure time. Upper plot and inset show the cell strain rate, 

lower plot shows the cell strain.  The three curves in each plot are coincident until the nu-
merical simulations fail to converge.  
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Figure 2-12. Typical time to numerical failure with CP model for grains and cavitational model on 
grain boundaries. Circle markers are test data from Kimura [23].  Solid lines are numerical 
simulation results, While the simulations do not reach high strain rates at failure, the mini-
mum strain rate and onset of tertiary creep are clear. 
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Figure 2-13. Cell deformation (5X magnification) at terminal time step. (a) 140 MPa applied stress, 

3,300 ht = and (b) 120 MPa applied stress, 8, 200 ht = . RVE model with CP model for grain 
response, cavitational grain boundary model with 6 1 MPa h m10 mbη

−⋅ ⋅= , 7  P mm10 M a/linK = . 
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Figure 2-14. Normal tractions on elements with / 0.9.a b >  Terminal step (3,300 h) of 140 MPa 

simulation with CP model and GB cavitation model with 6 1 MPa h m10 mbη
−⋅ ⋅= , 

7  P mm10 M a/linK = . 
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Figure 2-15. RVE strain rate history for various grain boundary interface response general defini-
tions. Applied uniaxial stress on 0.2 mmY = surface ramped to 140 MPa in 0.1 h, then held 
for the remainer of the simulation. The grain response uses the the Norton-Bailey model 
with 1 184 10  MPa hnB −− −= × ⋅  units and 5n = .  The interface linear normal stiffness, linK  is 
107 MPa/mm. The cavitation and nucleation parameters are: 0 50 nma = , 0 60 µmb = , 

1 1 315D = 10  MPa h mm− −− ⋅ ⋅ , 0 200 MPaΣ = , 4/ 2 10N IF N = × , / 1,000max INN = .  
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Figure 2-16. Effect of initial cavity radius 0( )a  and spacing 0( )b  on (a) cell strain rate, (b) average 

cavity size (among all grain boundary integration points) and (c) average cavity spacing 
(among all grain boundary integration points).  140 MPa applied stress. 

(a) 

(b) 

(c) 
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Figure 2-17. Effect of bη   on cell strain rate decomposition for (a) no sliding ( 1210 MPa-h/mmbη = ), (b) 

free sliding ( 210 MPa-h/mmbη = ) and (c) moderate sliding ( 610 MPa-h/mmbη = ).  All 3 simu-
lations have linear grain boundaries with 710 MPa/mmlinK = , Norton-Bailey grain creep re-
sponse, 140 MPa applied stress. 

(a) 

(b) 

(c) 
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Figure 2-18. Effect of diffusivity (D) and nucleation rate parameter ( )/N IF N on (a) cell strain rate, 

(b) maximum cavity size (among all grain boundary integration points) , relative to initial 
cavity size and (c) maximum number of cavities (among all grain boundary integration 
points) , relative to initial number of cavities. 

(a) 

(b) 

(c) 
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Figure 2-19. Effect of grain boundary nucleation parameter /max IN N  input parameter on (a) cell 
strain rate, (b) maximum number of cavities (among all grain boundary integration points) , 
relative to initial number of cavities, (c) maximum cavity size (among all grain boundary in-
tegration points) , relative to initial cavity size, and (d) percentage of grain boundary ele-
ments with / 0.5.a b >  
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Figure 2-20. Effect of traction-influenced nucleation on stress-level differentiation of cell strain his-
tory.  CP grain material response.  Top plot results from 0β =  in nucleation model and bot-
tom plot results from 2β = in nucleation model. All other material parameters are the same 
for both plots.  Each plot presents four simulation results (at 100, 120, 140, and 160 MPa ap-
plied uniaxial stress on 0.2 mmY =  cell surface) represented with solid lines and four sets of 
experimental results [23] (at same applied stresses) represented with circle markers and 
dashed lines. 
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3 Modeling	Grain	Deformation	using	Crystal	Plasticity	

This section discusses the development of the crystal plasticity finite element modeling 
framework accounting for the effects of dislocation substructure evolution and the transition of 
dominant deformation mechanisms that are vital to characterizing the evolution of the creep re-
sistance of Grade 91 during service life [24].  The use of crystal plasticity to model the inelastic 
response within the grains of the microstructure accounts for crystalline anisotropy, which gives 
rise to preferential directions of plastic strain.  Also, capturing the correct stress-dependence for 
the creep strain within grains arising from competing mechanisms plays a key role in quantifying 
the local stress and strain states that promote the actual evolution of defects such as cavities along 
grain boundaries. 

The following section describes the crystal plasticity framework for Grade 91 steel in relation 
to key microstructural features such as the crystallographic relationships of prior austenite grains.  
Section 3.2 follows with past developments of the crystal plasticity framework prior to this report.  
These developments include the enhancement of the CP numerical formulation and subsequent 
implementation in WARP3D, the inclusion of dislocation density-based constitutive equations 
with multiple hardening variables, initial studies of the strain-gradient enhanced formulations to 
model Bauschinger effects produced by geometrically necessary dislocations, statistically stored 
dislocation density-based modeling of Grade 91, and derivation of effective power-law exponent 
for grain boundary model nonlocal effects.  Then, Section 3.3 describes the additional enhanced 
features of the CP finite element framework in WARP3D, the multi-mechanism constitutive rela-
tions for modeling plasticity and creep within PAG of Grade 91, and the estimation of material 
parameters within those relations by fitting steady-state strain rate curves at different stresses to 
experimental creep tests.  These constitutive relations and material parameters are employed to 
predict the creep response of the material for fully-resolved microstructural models similar to 
those reported in Chapter 6. Lastly, conclusions of the crystal plasticity modeling effort and pos-
sible extensions of the framework are discussed in Section 3.5. 

3.1 Overview	of	crystal	plasticity	modeling	framework	in	relation	to	microstructural	features	

As described in Chapter 1 the microstructure of Grade 91 consists of a complex hierarchy of 
defect structures with increasingly finer spatial dimensions.  During the normalizing process, the 
prior austenite grains (PAG) transform to lath martenite, and fractions of each grain interior expe-
rience different lattice transformations that are approximated by the Kurdjumov-Sachs misorien-
tation relationship [25].  These regions of distinct martensite variants are referred to as packets, 
which have similar lath morphology but possibly high angle lattice mis-orientation.  A substantial 
amount of dislocation density is also generated during the normalizing process and self organizes 
into structures, the largest of which are called blocks.  Within blocks, alternating patterns of 
densely packed and immobilized dislocations interspaced by relatively uninterrupted atomic lat-
tice are observed and are termed as laths [24].  Due to their geometrical arrangement, the laths are 
often called dislocation cells, and the regions of high and low dislocation densities are termed cell 
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walls and cell interiors, respectively.  This hierarchical network of dislocations, packet bounda-
ries, and PAG boundaries provides substantial barriers to motion of mobile dislocation density 
and thus high resistance to creep.  Recovery of this network occurs at high temperatures and sus-
tained mechanical stress, leading ultimately to creep rupture.  Therefore, to develop capabilities 
for predicting the useful service life of Grade 91, a crystal plasticity finite element modeling 
framework is developed to capture the recovery processes of these microstructural features. 

This report describes models for microstructural evolution consisting of representative vol-
ume elements (RVE) containing many finite elements arranged in patterns to approximate the 
PAG. Similar microstructural models using both 2D (plane-strain) and 3D realizations were de-
veloped previously [12] with emphasis on the grain boundary deformation mechanisms.  Due to 
the prohibitive expense of resolving length scales across several orders of magnitude, only the 
PAG will be explicitly represented. An example microstructure containing 100 grains each com-
posed of several finite elements is described in Section 3.2.6.  The lattice orientations of all finite 
elements within a single grain are assigned a common value at the start of numerical simulations.  
The crystal lattice of the martensite phase is a body-centered tetragonal (BCT) crystal, which will 
be approximated herein as a body-centered cubic (BCC) structure.  The most commonly active 
slip systems for BCC crystals are the 12 { }110 111  systems, 12 { }112 111  systems, and 24 
{ }123 111  systems, for a total of 48 systems.  The motion of dislocations in directions specified 
by these slip systems leads to anisotropic response that is expected to affect the stress distribution 
within grains and along boundaries in contrast to the isotropic Norton-Bailey model employed in 
Chapter 2. 

In the crystal plasticity finite element method, the plastic slip of dislocations is driven by the 
resolved shear stress ( )sτ  on each slip system ( )s , as described in 3.2.2.  This motion gives rise to 
the observed creeping deformation of the material during experiments.  Dislocation slip is imped-
ed by several barriers within the blocks and laths which must be accounted for in the constitutive 
model.  The primary mechanism of dislocation motion at moderate stress and high temperature is 
the alternating glide and climb of dislocations around pinning obstacles [26]. Climb and glide 
permit mobile dislocation motion toward sites both within and at the boundaries of subgrain 
structures, where dipole-coalescence-based dislocation recovery mechanisms take place.  The 
scale of low-angle subgrain structures also coarsens as the dislocations comprising their bounda-
ries are mobilized by climb and glide, often doubling from initial as-tempered dimensions.  The 
extent of microstructural recovery grows with the scale of inelastic strain that is accommodated 
by dislocation climb and glide.  Efforts were undertaken during this project to account for these 
interacting mechanisms of dislocation mobility and substructure evolution within the crystal plas-
ticity constitutive model for the PAG.  One stage of the constitutive modeling framework, de-
scribed in Section 3.2.4, is based on tracking the evolution of the total dislocation density as parti-
tioned to the individual slip systems within the body centered cubic (BCC) lattice.  This model 
features several mechanisms for dislocation evolution, such as thermally-activated recovery by 
dislocation climb and dipole capture, and it also captures the crystallographic distribution of the 
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dislocation network with high fidelity.  However, during preliminary studies, this computational 
model did not reproduce the stress-dependence of the minimum creep strain rate reported from 
creep tests of Grade 91, and the evolution of strain rate within the grains varied only by one mag-
nitude compared to the several magnitudes exhibited by the experimental datasets. 

Therefore, a revised crystal plasticity for climb and glide is developed in Section 3.3.2 using a 
power-law flow rule with a hardening term reflecting the immobilization of mobile dislocation 
density that is initially present after processing of Grade 91.  Additionally, experimentally ob-
tained creep strain rates at lower stresses [27] suggest a deformation mechanism transition occurs 
below 100 MPa stress at 600 C temperature.  These trends motivated the incorporation of terms 
reflecting diffusional flow within the grains.  With any diffusional mechanism, the key idea is that 
there is a lattice flux of mass (atoms going one way, or, equivalently, vacancies going the other), 
with “sources” and “sinks” marking the beginnings and endings of the respective lattice journeys.  
The difference in chemical potential between the endpoints provides the driving force; usually the 
endpoints are taken to lie on internal (or external) interfaces such as grain boundaries, and a major 
part of the driving force is the normal stress on the boundary.  While the local effects of atomic 
diffusion are not followed in detail by the continuum treatment of viscoplasticity, a first order ap-
proximation is achieved by using a linear viscous deviator stress within the grains to provide a 
second source of inelastic strain rate.  This multi-mechanism model for the creep deformation of 
Grade 91 developed in Section 3.3.2 is investigated through a series of virtual creep tests both in 
3.4 and Chapter 0.  This CP modeling framework provides enhanced capabilities compared to the 
isotropic Norton-Bailey model for resolving the distribution of stress within the prior austenite 
grains and other substructure features.  Predicting the evolution of these driving stresses is crucial 
for capturing both the loss of creep resistance within the grains as well as the local stress state 
along grain boundaries that influences the rates of cavity nucleation and growth.  

3.2 Summary	of	prior	developments	for	crystal	plasticity	model	of	grain	response	

In pursuit of the grain deformation modeling framework described in Section 3.1, a compre-
hensive dislocation density-based crystal plasticity computational framework has been developed 
in previous project years to capture the deformation mechanisms of Grade 91 during creep behav-
ior.  These efforts, including extensions to model geometrically necessary dislocation effects, are 
recorded in a previous report [12] and are summarized here to provide background for the com-
bined dislocation creep and diffusion model in Section 3.3.2. 

Sections 3.2.1 and 3.2.3: A common platform for crystal plasticity model testing was devel-
oped both in WARP3D and a pre-existing MATLAB finite element code.  Also, the computation-
al aspects of geometric necessary dislocation (GND) density modeling in the crystal plastic finite 
element method were studied using a new formulation employing Lie-algebra mappings and nod-
al projection of elastic rotation. 



FY17	Status	Report	on	the	Micromechanical	Finite	Element	Modeling	of	Creep	Fracture	of	Grade	91	Steel	
September	2017	
 

ANL-ART-95	 56	 	

Sections 3.2.2 and 3.2.3: Significant enhancements were performed for the crystal plasticity 
material model platform in WARP3D to accommodate multi-variable hardening models by gen-
eralizing the framework of the constitutive equations and also the relevant subroutines in the 
code.  Additionally, the robustness of the material subroutine was improved by adding state pre-
dictors as well as finite difference tangent check routines.  The new constitutive framework was 
verified for a reference model for aluminum proposed by Ma et al. [28], which has a mechanism-
based treatment of the dislocation density evolution. 

Sections 3.2.2, 3.2.5, and 3.2.6: A dislocation density-based crystal plasticity model was de-
veloped for Grade 91 by retaining some features of the previous model [28] but substituting the 
hardening mechanism for a term based on dislocation climb-glide over precipitates and adding the 
body-centered cubic slip systems.  Other algorithmic enhancements were performed, such as in-
cluding an extended nonlinear equation solver package [29] and systematic bookkeeping of histo-
ry variables. 

3.2.1 Translation	of	material	subroutine	from	WARP3D	to	MATLAB	

To facilitate the investigation of the crystal plasticity modeling framework, the entire material 
subroutine from WARP3D was translated and implemented into a previously-developed research 
finite element code written in MATLAB, which provides debugging features and simplified syn-
tax compared to FORTRAN.  This code is capable of performing fully nonlinear finite element 
analyses for small and medium size problems and is fully customizable in terms of element sub-
routines, internal/history variable storage, and external macros.  At the time of translation, only 
the Mechanical Threshold Strength (MTS) model [14] [30] was implemented in WARP3D. First, 
the MTS crystal plasticity model had to be ported from WARP3D into MATLAB, which was per-
formed line-by-line in converting syntax from .f files to .m files.  The new material subroutine 
was subsequently verified by comparing the output for several test problems between WARP3D 
and MATLAB codes.  The MATLAB code streamlined the later prototyping of constitutive mod-
els, such as the diffusional creep model in Section 3.3.2. 

3.2.2 Kinematic	description	and	multi-variable	hardening	model	framework	in	WARP3D	

The crystal plasticity model platform in WARP3D has been extended to the multi-variable 
case by generalizing the constitutive equations and relevant subroutines in the code.  These fea-
tures are important for modeling the creep response of Grade 91 by allowing variable evolution of 
dislocation densities on different slip systems.  Additionally, enhancements were added to the 
nonlinear equation solver in the material subroutine to improve its robustness and also to stream-
line the implementation of constitutive models. 

A brief discussion of the relevant kinematic assumptions for the implementation of crystal 
plasticity in the finite element program WARP3D [14] is given below.  Further details are con-
tained in [12] and [30].  The treatment of large-strain constitutive modeling takes the form of hy-
poelasticity (also called the rate form) based upon an objective update of the Cauchy stress tensor 
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σ  on the current deformed state.  The particular objective stress rate employed by WARP3D is 
the Green-Naghdi rate, σ( , expressed in terms of the spin tensor Ω  as follows: 

    
⌣σ = "σ +σΩ−Ωσ   (3.1) 

where σ  is the Cauchy stress tensor, the superimposed “dot” denotes the material time derivative, 
and the spin tensor    Ω = !RRT  is defined in terms of the rotation tensor R  from the polar decom-
position of the deformation gradient =F RU . 

Within crystal plasticity theory, the plastic deformations are characterized by motion of dislo-
cations within the crystal lattice.  This mode of deformation is traditionally described in continu-
um mechanics through the multiplicative split of the deformation gradient into elastic and plastic 
parts: 

  ( )e p e p p= ≈ +F F F I ε R R U   (3.2) 

where the additional assumption of small elastic strains   ε ≪ I  is employed to simplify the 
resultant formulation.  This assumption is realistic for the behavior of metals in the creep regime. 

Substituting the elasto-plastic kinematic representation (3.2) into the Green-Naghdi objective 
rate and transforming to the unrotated intermediate configuration leads to the following rate 
equation: 

  
    
!t = Co : d − d p( ) + Rw p RT t − tRw p RT   (3.3) 

in which T=t R σR  is the unrotated Cauchy stress and 
   d = 1

2
!UU −1 +U −1 !U( )  is the unrotated rate 

of deformation. 

For single crystal plasticity, the plastic strain rate is commonly represented through slip rates 

   !γ
(s)  resolved onto the primary crystallographic planes 1,..., slips n= : 

 
 

    
!l p = "γ (s) !b (s) ⊗ !n(s)( )

s=1

nslip

∑   (3.4) 

 
 

    
d p = !γ (s)R pT "m (s)R p

s=1

nslip

∑   (3.5) 

 
 

    
w p = !γ (s)R pT "q(s)

s=1

nslip

∑ R p   (3.6) 



FY17	Status	Report	on	the	Micromechanical	Finite	Element	Modeling	of	Creep	Fracture	of	Grade	91	Steel	
September	2017	
 

ANL-ART-95	 58	 	

  
    
!m (s) = sym !b (s) ⊗ !n(s)( )   (3.7) 

  
    
!q(s) = skew !b (s) ⊗ !n(s)( )   (3.8) 

where     !b (s)  is the slip direction within a crystal plane s  and     !n(s)  is the unit normal to plane s .  
The “tilde” overbar refers to quantities in the lattice frame while the flat overbar denotes quanti-
ties in the current deformed frame.  Additionally, the evolution of the plastic rotation rate is ex-
pressed through the plastic vorticity as    !R p = w p R p . 

Many different constitutive expressions have been proposed for relating the plastic slip rates 

   !γ
(s)  to the current applied stress σ  and other factors such as temperature and microstructural 

state.  To allow for further model development, a general form of the slip rates is considered: 

  
    
!γ (s) = !γ (s) τ (s) ,ξ ,d;ν( )   (3.9) 

where 

  
    τ

(s) = t : R pT !m (s)R p( )   (3.10) 

is the resolved shear stress on the slip system, ξ  is a set of hardening variables, and d  is the un-
rotated rate of deformation defined previously.  These three fields will be treated in an implicit 
fashion within the computational algorithm, meaning that a coupled system of nonlinear equa-
tions will be solved at each time step.  Additionally, the model can accommodate other parame-
ters and field dependencies that are treated in an explicit manner; these variables are denoted by 
υ .  An example of this field is the Nye tensor α  discussed within Section 3.2.3 and [12] concern-
ing the size-dependent features of the MTS constitutive model. 

The second major component of the model is the evolution of the hardening variables ξ , 
which is considered in a format similar to (3.9): 

     
!ξ = !ξ t,ξ ,d;ν( )   (3.11) 

In the finite element setting, the material evolution equations (3.3) and (3.11) are tracked at 
the integration points of the elements within the mesh at a series of time steps.  Therefore, the ob-
jective of the material update routine is to advance the values of the stress and hardening varia-
bles at time nt  to time 1n nt t t+ = +Δ .  Both equations (3.3) and (3.11) will be integrated using a 
backward Euler scheme, and together represent an implicit system of equations to be solved. The 
equations are:  
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     0 = R1 = tn+1 − t tn+1,ξn+1,Δdn+1;νn( ) = tn+1 − tn + !t tn+1,ξn+1,Δdn+1;νn( )Δt⎡⎣ ⎤⎦   (3.12) 

  
     0 = R2 = ξn+1 −ξ tn+1,ξn+1,Δdn+1;νn( ) = ξn+1 − ξn +

!ξ tn+1,ξn+1,Δdn+1;νn( )Δt⎡⎣ ⎤⎦   (3.13) 

where 1 1n n t+ +Δ = Δd d  is specified from the current best estimate of the nodal displacement incre-
ment.  Note the explicit internal variables υ  do not require a system of equations because these 
values are supplied or computed offline from the material update algorithm. 

The quantities within the objective stress update (3.12) are defined with respect to the time 
discrete counterparts of (3.3) – (3.10): 

  
    
!tn+1Δt = Co : Δdn+1 − Δdn+1

p( ) + ΔWn+1
p tn+1 − tn+1ΔWn+1

p   (3.14) 

 
 

    
Δdn+1

p = Δγ n+1
(s) Rn

pT !m (s)Rn
p

s=1

nslip

∑   (3.15) 

 
 

    
ΔWn+1

p = Rn+1 Δγ n+1
(s) Rn

pT !q(s)Rn
p

s=1

nslip

∑
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

Rn+1
T   (3.16) 

  
    Δγ n+1

(s) = !γ (s) τ n+1
(s) ,ξn+1,Δdn+1 Δt ;νn( )Δt   (3.17) 

  
    τ n+1

(s) = tn+1 : Rn
pT !m (s)Rn

p( )   (3.18) 

Notice that the plastic rotation tensor pR  is also treated in an explicit fashion since the value 
from time nt  is used in equations (3.15) – (3.18).  This algorithmic assumption greatly simplifies 
the nonlinear system of equations (3.12) – (3.13) and generally appropriate since the evolution of 
plastic rotations pR  is relatively slow compared to the plastic strain rate pd  [30]. 

The residual equations (3.12) – (3.13) are solved using a Newton-Raphson scheme with ap-
propriate initial guesses for the stress 1n+t  and hardening 1n+ξ .  Details of the algorithm are pro-
vided in [12].  The Jacobian matrix, which has dimensions 6 hardn+ ×6 hardn+ , is obtained from 
the consistent linearization of (3.12) – (3.13), where special care is taken to apply the chain rule 
of calculus to isolate the single terms which are dependent on the specific form of the constitutive 
model.  Clearly, only six quantities are required to be implemented by the user: 
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Δγ n+1

(s) , !ξβ=1,nhard
,
∂Δγ n+1

(s)

∂τ (s) ,
∂Δγ n+1

(s)

∂ξβ

,
∂ !ξα

∂tkl

,
∂ !ξα

∂ξβ

  (3.19) 

These six quantities are the slip increment (3.9), hardening evolution rate (3.11), and the par-
tial derivatives of these two fields with respect to the primary unknowns t  and ξ .  Each of these 
depends integrally upon the specific form of the constitutive model. 

When the Newton-Raphson algorithm has been terminated after sufficient reduction of the re-
siduals, the consistent values for t  and ξ  have been found for the current value of the strain in-
crement 1n+Δd  at the integration point.  The unrotated stress t  is then transformed to the Cauchy 
stress σ  and used by the element subroutine to compute the internal force vector for assembly in 
the global equilibrium residual vector.  

Often, the evolution equations (3.12) – (3.13) represent a very stiff system of equations [31], 
particularly when the plastic slip rate (3.9) as a function of the resolved shear stress is expressed 
as an exponential form rather than power-law form.  Therefore, several enhancements have been 
added to the finite element solution algorithm in WARP3D that facilitate the solution of stiff sys-
tems [12].  The current global finite element solver in WARP3D employs a Newton-Raphson ap-
proach with adaptive subdivision of the time step tΔ  if a Gauss point of an element fails to con-
verge within the material stress update algorithm.  Within the material stress update algorithm for 
crystal plasticity, the strain increment can also be adaptively subdivided to determine the con-
verged stresses and hardening with intermediate increments.  Also, the material update equations 
are in fact solved using the modified Newton method combined with line search.  Lastly, the al-
gorithmic material update is performed in two phases as described in [12].  First, an initialization 
phase is employed wherein the hardening variables are kept frozen at a best-estimate value while 
the stress is updated via (3.12).  After convergence, the estimated stress and hardening are used as 
the initial guess for solving (3.12) – (3.13) at the current (sub)increment. 

3.2.3 Modeling	geometrically	necessary	dislocations	through	plastic	rotation	gradient	field	90%	

Grade 91 steel is known to exhibit cyclic softening during fatigue tests [32] [33] [34], where 
the maximum flow stress decreases and the total deformation increases over several hundred cy-
cles.  A viable approach for capturing these microstructural effects is through the geometrically 
necessary dislocation (GND) density based model proposed by Bayley and Geers [35], where the 
back stress is derived from the GND spatial gradient as: 

  
    τ b

(α ) = !b (s) ⋅ σ s
int +σ e

int( ) ⋅ !n(s)   (3.20) 

This model is based on the mechanism of dislocation pile up against grain boundaries.  When 
the dislocation density varies spatially, the elastic field produced by individual dislocation can be 
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integrated within a small zone of influence to yield a resultant back stress.  The derivations within 
[35] provide expressions for the back stress, which are highly dependent on the crystallographic 
orientation. 

In order to calculate the GND density gradient, Bayley et al. employed a mixed formulation 
with dislocation density as nodal unknowns.  However, that method is computationally expensive 
because each node in the mesh has 18 additional degrees of freedom (DOF) which must be in-
cluded in the global system of equations.  Currently, the architecture of WARP3D does not permit 
the addition of DOFs per node.  Therefore, a simplified approximation is pursued in this work 
that is based only on displacement nodal unknowns and using projections of the elastic defor-
mation gradient tensor to obtain the GND. 

The measure of geometrically necessary dislocation density is obtained from the elastic in-
compatibility quantified by the Nye tensor α .  The mapping of Nye tensor components into dis-
location densities on slip systems is accomplished through a 2L  minimization process advocated 
by Arsenlis and Parks [36], leading to the following equation: 

 
 

     ρGND = AT A( )−1
ATα = Bα , Aij

(s) = !bi
(s) ⊗ !t j

(s)    (3.21) 

The Nye tensor is obtained from the gradient of the elastic deformation gradient eF : 

  1
0 e

−= −∇ ×α F   (3.22) 

However, in the traditional finite element implementation of crystal plasticity, the elastic de-
formation gradient is treated as a local quantity that is calculated solely at the integration points 
inside elements of the mesh.  Therefore, two techniques for projecting the elastic rotation tensor 
and evaluating its derivative were developed and compared through as a series of benchmarks 
[37].  As a candidate crystal plasticity model, the Mechanical Threshold Strength (MTS) model 
that is implemented in WARP3D was chosen.  The current implementation of the model [14] [30] 
uses an elemental projection to evaluate the derivatives for the Nye tensor. 

Due to the assumption of small elastic strains (see (3.2)), the quantity which we need to inter-
polate in order to compute the Nye tensor 1e−=∇×α F  is the elastic rotation tensor eR : 

  
1 1,e p − −⎡ ⎤= =⎣ ⎦R R R R FU   (3.23) 

where pR  is the plastic rotation tensor evaluated through the constitutive model and R  is the 
rotation tensor defined from the right polar decomposition of the deformation gradient F .  For 
the elemental projection, the values of eR  at the Gauss points in each element are employed to fit 
a linear function for each component, and this linear function is differentiated to obtain the curl 
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1e−∇×F .  While the elemental projection was sufficient for conducting the simulations in Mess-
ner et al. [30], it is an ad hoc procedure.  First, this element-based approach does not incorporate 
any communication of the field response between elements of the mesh, dampening the nonlocal 
contribution from the GND hardening term.  Also, it is valid only for obtaining the first deriva-
tives of the rotation tensor field.  In contrast, crystal plasticity models involving a measure of the 
back-stress require the second derivative of the elastic rotation to be well-defined [38] [39]. 

In light of these motivations, a new numerical method is developed for extending the values 
of the plastic deformation gradient at the integration points into a non-locally defined field.  The 
procedure is motivated by the developments of Mota et al. [40] on the projection of internal vari-
ables.  First, the value of the plastic deformation gradient is obtained at each integration point by 
the usual loop over all the finite elements in the mesh during the stress-update process.  These 
values are extrapolated to the nodes of the mesh by using the bilinear finite element shape func-
tions, in a process directly analogous to the post-processing of elemental stress fields for contour 
plots.  The multiple values of the field at each node, which are generated by the various elements 
neighboring that node, are then averaged to a single value based on the tributary area of the ad-
joining elements.  This unique nodal value then forms a field that can be interpolated using the 
Lagrangian finite element shape functions.  The derivative of the field is then obtained by directly 
differentiating the Lagrangian shape functions, specifically at the integration points of the finite 
element mesh.  This provides the value of the oriented GND density that are needed within the 
evaluation of the material model listed above.  

Although the node-based smoothing approach is conceptually straight-forward, an issue arises 
when the method is applied in its current form to the elastic rotation tensor.  Recall that rotation 
tensors are a member of the space of orthonormal tensors ( )3SO .  This space of tensors is closed 
under multiplication (Lie group) rather than addition (Lie algebra), which means that linear inter-
polation produces tensors outside the space.  A novel method for preserving the properties of in-
ternal variable fields is proposed in Mota et al. [40] which uses the associated Lie algebra space 
of skew tensors ( )3so .  Accounting for this mapping between Lie algebras and groups during the 
derivative evaluation, the modified procedure for computing the Nye tensor field α  is summa-
rized in Table 3-1. 
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Table 3-1. Node-based procedure for computing Nye tensor 

1. Logarithmic map: ( )lne e
a a=r R  for each int1,...,  a n=  in eΩ   

2. Elemental field: 
( ) ( )

int

1

ˆˆ ˆ
n

e e
a a

a
N

=

=∑r ξ r ξ  in eΩ  

3. Extrapolate: ( ), ,ˆ ˆe e
A e a A e=r r ξ  for each 1,...,  nodeA n=  and eΩ  

4. Smooth: 

    
!rA = r̂A,e

e

e=1

nel
A

∑
⎛

⎝
⎜

⎞

⎠
⎟ nel

A  for each 1,...,  nodeA n=  

5. Interpolate: 

    
!r e X a( ) = !rA N A X a( )

A=1

nnode

∑  for each int1,...,  a n=  in eΩ  

6. Exponential map: 
    
!Re X a( ) = exp !r e X a( )( )  

7. Differentiate: 
    
∇ !Re( )T

= ∇ exp !r e X a( )( )⎡
⎣

⎤
⎦

T  

 

An important feature affecting the accuracy, robustness, and stability properties of a constitu-
tive material model is the explicit or implicit treatment of the material and kinematic quantities.  
The current implementation in WARP3D uses an implicit treatment of the stress tensor and hard-
ening variables, but an explicit treatment of the kinematic variables eR  and α .  As discussed in 
the WARP3D manual [14], the evolution of the elastic rotation tensor and Nye tensor are ex-
pected to be rather mild from one load step to the next in a typical crystal plasticity simulation.  
The benefit of performing explicit calculation is that an additional system of equations does not 
have to be solved self-consistently.  However, the assumption of slowly varying rotations places a 
restriction on the size of the loading increment which may not always be so easy to determine a 
priori.  Addressing this issue by reducing the load step size causes an increase in the number of 
stiffness matrix factorizations and greatly increases the cost of simulating the response. 

As an alternative, a staggered procedure was developed for simultaneously solving for the 
stress tensor, hardening variables, and kinematic variables [37].  Observe that the calculation of 
the Nye tensor 1e

n n
−=∇×α R  necessarily involves nonlocal calculations, either across Gauss 

points or across nodes and elements.  Therefore, this calculation must occur outside of the tradi-
tional loop over Gauss points for the material update.  Rather than adding additional equations at 
the global Newton level, an internal loop is performed within each Newton iteration, referred to 
as the subcycle loop.  A comparison of the performance properties and the level of solution 
equivalence between the elemental and nodal projection methods was assessed through a simula-
tion of a single crystal loaded by shearing tractions.  The size effect properties of the MTS model 
were investigated through the bending of a single crystal strip subjected to monotonically increas-
ing rotations is investigated.  The robustness of the method under heterogeneous deformations 
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indicate that it is a solid platform for modeling back stress effects from geometrically necessary 
dislocations. 

3.2.4 Statistically-stored	dislocation	density	based	model	including	climb-glide	mechanism	

A dislocation density-based model was developed and implemented within the multi-variable 
crystal plasticity framework of WARP3D to capture the material response across a range of de-
formation modes including strain-driven tensile tests, creep-fatigue, and creep [12].  The constitu-
tive model retains the dislocation geometrical interactions proposed in the Ma and Roters [28] 
model but accounts for other microstructurally relevant mechanisms for Grade 91 as described in 
Section 3.1.  The slip systems for face-centered cubic (FCC) aluminum were replaced with the 
body-centered cubic (BCC) systems for martensitic steel.  While dislocations in BCC crystals slip 
along the [ ]111  direction, the relative slip resistance offered along the ( )110 , ( )112 , and ( )123  
planes are nearly equal, particularly at high temperatures [41].  Therefore, all 48 of these slip sys-
tems are utilized in the model; each system is listed in Table 3-2.  The interaction of dislocations 
across slip systems is calculated geometrically through sine and cosine functions of the slip 
planes, defining parallel and forest dislocation contributions.  Only statistically stored edge dislo-
cations were considered in the crystal plasticity model. 
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Table 3-2. Slip system Miller indices for slip plane and direction for BCC crystals 

ID Slip System ID Slip System ID Slip System 
(1) ( )110 111⎡ ⎤⎣ ⎦   (2) ( )110 111⎡ ⎤⎣ ⎦  (3) ( )[ ]110 111  

(4) ( )110 111⎡ ⎤⎣ ⎦  (5) ( )101 111⎡ ⎤⎣ ⎦  (6) ( )101 111⎡ ⎤⎣ ⎦  

(7) ( )[ ]101 111  (8) ( )101 111⎡ ⎤⎣ ⎦  (9) ( )011 111⎡ ⎤⎣ ⎦  

(10) ( )011 111⎡ ⎤⎣ ⎦  (11) ( )[ ]011 111  (12) ( )011 111⎡ ⎤⎣ ⎦  

(13) ( )112 111⎡ ⎤⎣ ⎦  (14) ( )112 111⎡ ⎤⎣ ⎦  (15) ( )112 111⎡ ⎤⎣ ⎦  

(16) ( )[ ]112 111  (17) ( )121 111⎡ ⎤⎣ ⎦  (18) ( )121 111⎡ ⎤⎣ ⎦  

(19) ( )[ ]121 111  (20) ( )121 111⎡ ⎤⎣ ⎦  (21) ( )211 111⎡ ⎤⎣ ⎦  

(22) ( )[ ]211 111  (23) ( )211 111⎡ ⎤⎣ ⎦  (24) ( )211 111⎡ ⎤⎣ ⎦  

(25) ( )123 111⎡ ⎤⎣ ⎦  (26) ( )123 111⎡ ⎤⎣ ⎦  (27) ( )123 111⎡ ⎤⎣ ⎦  

(28) ( )[ ]123 111  (29) ( )132 111⎡ ⎤⎣ ⎦  (30) ( )132 111⎡ ⎤⎣ ⎦  

(31) ( )[ ]132 111  (32) ( )132 111⎡ ⎤⎣ ⎦  (33) ( )213 111⎡ ⎤⎣ ⎦  

(34) ( )213 111⎡ ⎤⎣ ⎦  (35) ( )213 111⎡ ⎤⎣ ⎦  (36) ( )[ ]213 111  

(37) ( )231 111⎡ ⎤⎣ ⎦  (38) ( )231 111⎡ ⎤⎣ ⎦  (39) ( )[ ]231 111  

(40) ( )231 111⎡ ⎤⎣ ⎦  (41) ( )312 111⎡ ⎤⎣ ⎦  (42) ( )[ ]312 111  

(43) ( )312 111⎡ ⎤⎣ ⎦  (44) ( )312 111⎡ ⎤⎣ ⎦  (45) ( )321 111⎡ ⎤⎣ ⎦  

(46) ( )[ ]321 111  (47) ( )321 111⎡ ⎤⎣ ⎦  (48) ( )321 111⎡ ⎤⎣ ⎦  

The relevant equations for the crystal plasticity model proposed for Grade 91 are listed in Ta-
ble 3-3; details on the variable definitions and units are given in [12].  The flow rule has been 
modified from [28] to capture two key features of the material mechanisms.  First, constitutive 
models for BCC materials [42] typically consider the lattice resistance or Peierls stress to be the 
most significant short-range obstacle to dislocation motion, which is taken as a constant stress 0̂τ  
that does not depend on the dislocation network.  Also, during creep at high temperatures under 
sustained lower stresses, the motion of dislocations may be described through a glide-climb 
mechanism [32] [43].  In this mechanism, the dislocations are pinned against precipitates or dense 
cell walls in the microstructure for extended periods.  A distinguishing feature of the proposed 
model is that the mean free path actually evolves in time due to the coarsening of the M23C6 car-
bides and the spreading out of the subgrain cell walls.  The coarsening rate for particles is mod-
eled through the Ostwald ripening equation [44], which accounts for agglomeration together over 
time due to diffusion at high temperatures.  However, the simulation results in [12] adopt a con-
stant mean free path to focus the contribution to the creep rate acceleration to be the grain bound-
ary cavitation alone.  
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Table 3-3. Flow rule and dislocation density evolution for Grade 91 constitutive model 

Equation Eqn. Number 

   

!γ (α ) = fMρSSD
(α )( )vsλ

(α ) ×

exp
−Fo

kT
1−

τ (α ) −τ pass
(α )

τ̂ 0 G G0

p⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

q⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
sign τ (α )( )  (3.24) – Slip rate 

( )( )
part ,c b t Tα

λλ η=  (3.25) – Mean free path 
( ) ( )
pass Pc Gbα α

ρτ ρ=  (3.26) – Passing stress 

    
ρF

(α ) = ρSSD
(β ) cos !m (α ) , !t (β )( )

β=1

N

∑  (3.27) – Forest dislocations 

    
ρP

(α ) = ρSSD
(β ) sin !m (α ) , !t (β )( )

β=1

N

∑  (3.28) – Parallel dislocations 

  !ρSSD
(α ) = !ρLock

(α ) − !ρDR
(α ) − !ρClimb

(α )  (3.29) – Dislocation evolution 

   
!ρLock

(α ) =
cLock

b
ρF

(α ) !γ (α )  (3.30) – Lock formation 

   !ρDR
(α ) = cDRρSSD

(α ) !γ (α )  (3.31) – Dynamic recovery 

   
!ρClimb

(α ) = cClimb exp −
FClimb

kT
⎛
⎝⎜

⎞
⎠⎟
τ (α )

kT
ρSSD

(α )( )2
!γ (α )( )mC  (3.32) – Climb annihilation 

part 1.6 1
4

p
p

p

r
b
λ π

η
φ

⎡ ⎤
= ≈ −⎢ ⎥

⎢ ⎥⎣ ⎦
 (3.33) – Relative particle spacing 

(not used) 

( )( ) ( )
3 3

,,p p o pr t T r k T t= +  (3.34) – Particle radius (not used) 

0.15pφ =  (3.35) – Volume fraction 

( ) 0
0

0exp 1

DG T G
T
T

= −
⎛ ⎞ −⎜ ⎟
⎝ ⎠

 (3.36) – Temperature dependent 
shear modulus 

 

The crystal plasticity model in Table 3-3 has 12 material parameters, several elastic moduli 
that are functions of temperature, and the initial dislocation density on each of the 48 slip sys-
tems.  These parameters were estimated by fitting the results of finite element tensile simulations 
to the experimental tensile data from Swindeman [45] for Grade 91, which has stress-strain 
curves for several temperatures and strain rates.  This dataset had been used by Mooseburger [46] 
to calibrate an isotropic plasticity model for Grade 91.  Presently, the data for the temperature of 
600°C is relevant for the fatigue and creep simulations conducted in subsequent sections of this 
report.  The elastic material parameters E  and ν  are fixed to the values appropriate for 600°C as 
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employed by the Norton-Bailey model.  The temperature dependence of the shear modulus G  is 
specified to agree with experimentally measured variations [24]. Initial ranges for some of the 
plasticity parameters were determined from explicit integration of the plastic slip rate equation 
and dislocation density equations in MATLAB.  However, the interconnectedness of the parame-
ters and their effects on the initial yield point and saturation stress suggested that additional help 
would be needed to isolate the values.  With the goal of selecting material parameters that would 
match the response near the 600°C temperature, a modified version of the Genetic Algorithm 
(GA) was used since a brute force method would not be efficient enough when the values of sev-
eral parameters must be obtained.  This modified GA method was developed by [47] and adds a 
domain trimming functionality.  

Due to the hundreds of generations and simulations performed during GADT, the computa-
tional model in WARP3D needed to be very simple and efficient.  Therefore, the computational 
domain was chosen as a single trilinear hexahedral element with dimensions 5 5 5 mm× × .  The 
WARP3D crystal plasticity framework allows for multiple crystals to be modeled within a single 
element by using the Taylor (isostrain) assumption, where each crystal is assumed to experience 
the same applied incremental strain but responds with a different internal stress.  The orientation 
of each crystal can be different, to approximate a polycrystal.  Therefore, 100 orientations were 
sampled from a random texture and applied to the integration points in the single element. The 
boundary conditions of the model were specified for uniaxial tension, and 30 load steps of pre-
scribed strain increments are applied to reach a total true strain of 0.03ε =  at constant true strain 
rate, to approximate the experimental conditions. 

The GADT targets the best fit of the stress-strain curves compared to the Swindeman tensile 
data for: °500 CT =  and    !ε = 6.7 ×10−5 s−1 , 550 CT °=  and    !ε = 6.7 ×10−5 s−1 , 600 CT °=  and 

   !ε = 6.7 ×10−5 s−1 , 600 CT °=  and    !ε = 6.7 ×10−5 s−1 , and °600 CT =  and    !ε = 6.7 ×10−5 s−1 .  The 
parameters obtained from the GADT are reported in Table 3-4.  Most of the parameters are in ac-
ceptable ranges as described in [28].  However, the activation energy 0F  and attack velocity sv  
were somewhat larger than expected.  These larger values seemed to be necessary to fit the proper 
strain rate and temperature sensitivity observed in the experimental data.  
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Table 3-4. Best fit material parameters obtained from GADT 

Parameter Value Units 
E  150,000 MPa 
ν  0.285 dimensionless 

0D  58.75 10×  MPa 

0T  4,800 K 

0G  60,940 MPa 

0ρ  61.852 10×  2mm−  

sv  122.72 10×  1s−  

0F  166.901 10−×  mJ  

0̂τ  621.9 MPa 
p  1.0  dimensionless 
q  1.0  dimensionless 
cρ  0.2495 dimensionless 

partcλη  1,540 dimensionless 

Lockc  0.0058 dimensionless 

DRc  40.86 dimensionless 

Climbc  1512. 7 08 −×  5mm  s Cm  

Cm  0.3259 dimensionless 

climbF  163.457 10−×  mJ  
 

Figure 3-1 shows the resulting stress-strain curves in tension corresponding to these material 
parameters obtained from the GA.  The parameter set provides adequate results for the tempera-
tures 500 C T °= , 550 C T °= and 600 C T °= with higher strain rate.  The simulated stresses are 
larger than the experimental data at lower strain rates.  Also, the amount of straining to the satura-
tion point appears to be under-predicted.  However, these parameters were obtained when the GA 
had settled into a stagnant state after 3 days of iterations where the fitness function values were 
remaining constant between generations.  Also, the initial dislocation density in total across the 
48 slip systems is about 7 29 10  mm−×  or 13 29 10  m−× , which is a reasonable value for normalized 
and tempered martensitic steel [24].  Thus, the parameter values listed in Table 3-4 are employed 
within the crystal plasticity finite element simulations of the creep response of the 100 grain cell 
model reported in Section 3.2.6. 

3.2.5 Nonlocal	variables	and	effective	power	law	exponent	for	grain	boundary	model	

The granular deformation in Grade 91 due to crystal plasticity is one of the two primary 
mechanisms considered; the other is deformation along grain boundaries due to viscous sliding 
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and growth of cavities.  As described in Chapter 2, the grain boundary cavitation model is driven 
by the stress field and creep strain rate in the neighborhood of the grain boundary.  The model 
assumes an isotropic, viscoplastic, power-law constitutive relation within the grains.  Within [12], 
this derivation is extended to the case of non-power-law, anisotropic crystal plasticity by deter-
mining an effective power-law coefficient B , and exponent n , at each volumetric finite element 
incident on a grain boundary finite element.  A summary of those results, which logically extend 
to the case of crystal plasticity combined with diffusional creep in Section 3.3.2, are provided 
here. 

The suite of isotropic viscoplastic/diffusion models of cavity/cell/grain boundary evolution is 
based on grain boundary and surface diffusion, coupled with an isotropic power-law viscous rep-
resentation of matrix flow according to equation (3.58) in Table 3-8, where constitutive parame-
ters are B  and the power-law exponent n .  The grain boundary cavitation models of [48] [49] 
[50] exhibit parametric dependence on n  especially, as well as on the ratio    σ e / !εe

C .  When adapt-
ing anisotropic models of crystal plasticity in the grains to such models of grain boundary cavita-
tion, it becomes necessary to make appropriate generalizations to recover “effective'' values for n  
and B . 

Table 3-5. Equations for Mises stress formulation of effective power law 

Equation Eqn. Number 

   !εe
C = B(σ e )n  (3.37) – Power-law viscous form 

3 :
2eσ ʹ ʹ= σ σ  (3.38) – Equivalent tensile stress 

1 tr
3

ʹ ≡ −σ σ 1 σ  (3.39) – Cauchy stress deviator 

   
!εe

C = 2
3
!ε C : !ε C  (3.40) – Equivalent creep strain rate 

    
!ε C = !ε D +

α=1

Nslip

∑ !γ α mα ⊗ nα( )
S

 
(3.41) – Combined viscoplastic 
strain-rate 

( ) 1
2S

α α α α α α⎡ ⎤⊗ ≡ ⊗ + ⊗⎣ ⎦m n m n n m  (3.42) – Deviatoric Schmid dyadic 

We focus on cubic crystals.  At elevated temperatures, their viscoplastic response exhibits on-
ly limited anisotropy (for example, a lower-symmetry hexagonal crystal generally is much more 
anisotropic), so it seems reasonable to extract isotropic-equivalent “effective'' creep properties for 
the single crystal, based on the viscoplastic flow rule expressed in the crystal frame according to 
(3.59).  Therein, the flow on crystallographic slip-system ‘α ’ is characterized by the (symme-
trized) deviatoric Schmid dyadic ( )

S

α α⊗m n based on slip direction αm  and the slip-plane nor-
mal αn , and slip-system viscoplastic shearing rate  !γ

α .  Anticipating the constitutive model de-
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velopments in Section 3.3.2, the combined viscoplastic strain rate is a sum of the rates due to 
crystal-based dislocation motion and due to diffusional creep, signified by   !ε

D . 

The functional form for the slip-rate    !γ
α = f (τ α ;ν )  is expressed in terms of the resolved shear 

stress : ( )α α ατ ≡ ⊗σ m n  and a set of internal state variables (typically, dislocation densities on 
various slip systems), here collectively denoted ‘ ξ ’ similarly to Section 3.2.2.  At any stage of 
the continuum crystal viscoplasticity calculations, it is clear that both ʹσ  and   !ε

C  can be defined as 
given by (3.38) and (3.40); hence, so can eσ  and   !εe

C  and their quotient. 

The more challenging interpretation is the (instantaneous) effective isotropic power-law creep 
exponent n . Note that the power-law model can be expressed by 

     log !εe
C = log B + n logσ e ,   (3.43) 

or in terms of a strain-rate-sensitivity, with constant B , 

     d(log !εe
C ) = n d(logσ e )  .   (3.44) 

Re-arranging and using the functional form of the logarithmic derivative 
(log ) / (1/ ) /d y dx y dy dx= , 

 
 

   
neff =

σ e

!εe
C

d( !εe
C )

dσ e

.   (3.45) 

In the isotropic case, with ʹσ  coaxial with   !ε
C , the creep exponent relates changes in the mag-

nitude of the creep rate (proportional to   !ε
C ) to corresponding changes in the magnitude of the 

stress deviator (proportional to ʹσ ).  This interpretation of ‘magnitude sensitivity’ will be retained 
in the interpretation of an effective creep exponent for the crystal plasticity. 

A straight-forward interpretation along such lines lies in taking a small assumed proportional 
change in the stress deviator components: 

  ( ) (1 ) ,z z ʹ≡ +σ σÂ   (3.46) 

where z  is a dimensionless number that will ultimately be set to zero, leading to equivalent stress 
measure 

 
 3( ) ( ) : ( ) |1 | ,

2e ez z z zσ σ= = +σ σÂ Â Â   (3.47) 
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and to ‘starred’ resolved shear stress measures ; (1 )zα ατ τ= +Â .  The starred resolved shear stress-
es generate the ‘starred’ slip-system shearing rates 

      !γ
α ;! = f (τ α ;! ;ξ ),   (3.48) 

a ‘starred’ combined viscoplastic strain rate 

 
 

     
!ε ! = !ε D! σ ! (z)( ) +

α=1

Nslip

∑ !γ α ;! mα ⊗ nα( )
S

,   (3.49) 

and a ‘starred’ equivalent creep strain rate 

 
 

    
!εe
! = 2

3
!ε ! : !ε ! .   (3.50) 

The derivative of the effective creep strain rate with respect to stress can be interpreted as: 

 
 

    

d !εe
C

dσ e

=
d !εe
!

dσ e
!

z=0

=
d !εe
!

dz
z=0

dσ e
!

dz
z=0

.   (3.51) 

The denominator of this extended fraction, evaluated at 0z = , is simply /e ed dzσ σ=Â . A 
formal treatment of the numerator is 

 

 

     

d !εe
! (z)
dz

= 1
2

1
!εe
!

22
3
!ε ! : d !ε !

dz

= 2
3 !εe
!
!ε ! : d !ε D!

dσ e
!

dσ e
!

dz
+

α=1

Nslip

∑ ∂ f (τ α ;! ;ξ )
∂τ α ;!

dτ α ;!

dz
mα ⊗ nα( )

S

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

= 2
3
!ε !

!εe
!

: d !ε D!

dσ e
!

dσ e
!

dz
+

α=1

Nslip

∑τα ∂ f (τ α ;! ;ξ )
∂τ α ;! mα ⊗ nα( )

S

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
.

  (3.52) 

Evaluating at 0z =  to obtain the derivative yields 

 
 

    

d !εe
C(z)

dz
z=0

= 2
3
!ε C

!εe
C : d !ε D

dσ e

σ e +
α=1

Nslip

∑τα ∂ f (τ α ;ξ )
∂τ α ; mα ⊗ nα( )

S

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

.   (3.53) 
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Combining equations  (3.45), (3.48), and (3.49), the suggested form for `equivalent' visco-
plastic rate-sensitivity is 

 
 

    
neff =

2
3
!ε C

!εe
C : d !ε D

dσ e

σ e

!εe
C +

α=1

Nslip

∑ ∂ f (τ α ;ξ )
∂τ α ;

τ α

!εe
C mα ⊗ nα( )

S

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

.   (3.54) 

Note that the partial derivative ( ; )f α ατ τ∂ ∂ξ  is readily defined for the crystal plasticity mod-
el and is already calculated in the WARP3D code using equation (3.19).  Therefore, this defini-
tion (3.54) for the effective exponent can be easily evaluated.  The effective rate coefficient fol-
lows as: 

     Beff = !εe
C (σ e )neff   (3.55) 

These formulas (3.54) and (3.55) have been inserted into the crystal plasticity module de-
scribed in Section 3.3.2 and are computed after the convergence of the local Newton-Raphson 
iterations to solve the coupled stress and hardening update equations (3.12) – (3.13).  

Possible issues arise from this approach for determining an effective exponent.  For example, 
the crystal plasticity model exhibits primary-like creep due to the dislocation evolution equations; 
incorporation of particle coarsening relations could introduce tertiary-like creep effects as well.  
Hence, the corresponding values of rate sensitivity can evolve during the simulation (in contrast 
to the assumed-constant rate sensitivity parameter n  of the isotropic formulation).  In simulations 
of creep using the 3D cell model reported in this section, constant (hard-coded) values have been 
assigned to the effective exponent and coefficient within the crystal plasticity subroutine: 
eff 5.0n =  and eff18 1

eff 4.0 10  MPa hnB −− −= × ⋅ .  These values do not affect the stress update of the 
CP model; they are used solely in the nonlocal variable passing scheme for the interface elements 
modeling cavity growth.  Also, the calculations are stable for the multi-mechanism model devel-
oped in Section 3.3.2, as an example demonstrates in Section 3.4.4. 

3.2.6 Modeling	creep	response	using	3D	cell	model	and	multi-dislocation	density-based	model	

Similar to the previous report [12], the primary benchmark case for evaluating the perfor-
mance of the crystal plasticity model for creep response is the 100 grain cell model discussed in 
Chapter 2 for the Norton-Bailey model.  This model is also employed for the simulations with the 
multi-mechanism crystal plasticity model described in Section 3.3.2 as well as for the final cali-
brations and sensitivity studies in Section 6.  Therefore, the description of the cell model is re-
peated below, with the few distinguishing features highlighted.  Additionally, key results from the 
multi-dislocation model described in Section 3.2.4 are reproduced from [12] to highlight profi-
ciencies and deficiencies in the model predictions that prompted the constitutive formulation revi-
sions in Section 3.3.2. 
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The 3D cell model is a ( )20.2 mm  cube-shaped domain containing 100 grains that is meshed 
with 10,402 quadratic tetrahedral finite elements.  Figure 3-2 shows the arrangement of the grains 
within the cell.  For the CP model, the crystallographic orientation of each grain needs to be spec-
ified. The list of 100 orientations sampled from a uniform texture that is employed for the tension 
and fatigue simulations is also used for the cell model.  As shown in Figure 3-2, all of the finite 
elements within the same geometric region corresponding to a grain are assigned the same Euler 
angles, according to the Kocks convention.  

Two instances of the microstructure are considered.  In the first, full continuity of the dis-
placement field is enforced between grains in the model, to focus solely on the creep response 
predicted from the crystal plasticity model of dislocation climb-glide. This finite element mesh 
contains 15,761 nodes, which is fewer than the models in Chapter 2 because the nodes along 
grain boundaries have not been duplicated.  In the second, 3,921 interface elements are inserted 
between the boundaries of the grains, leading to 25,299 nodes in the model identical to the finite 
element meshes analyzed in Chapter 2, and the grain boundary behavior was specified as sliding 
plus cavity growth but nucleation was suppressed.  

The boundary conditions on the cell consist of symmetry conditions on the faces 0x = , 
0,y =  and 0z = .  The effectively incomplete periodic boundary conditions obtained through 

multi-point constraints (MPC) are applied on the other 3 faces of the cube.  For the simulations 
herein, a uniform pressure is applied on the 0.2z =  mm face to represent the tensile creep load-
ing.  The stress is increased linearly during 100 steps at 3.6 seconds per step to reach maximum 
load at 0.1 hours.  This stress increase period is subsequently referred to as the “load ramp peri-
od”.  The values of stress are set to 100, 120, and 140 MPa to correspond to the load levels inves-
tigated experimentally by Kimura et al. [23].  The temperature is set to 600oC.  The evolution of 
the dislocation density state variables within the crystal plasticity model are expressed through 
stiff differential equations.  Therefore, small time step sizes were required to achieve convergence 
of the nonlinear finite element equation solver.  Table 3-6 lists the time steps for the simulations. 
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Table 3-6: Description of time steps within CP finite element simulation of creep. 

Ending step Number of steps Time step (s) Total model time (hr) 
100 100 3.6 0.1 
160 60 36 0.7 
200 40 360 4.7 
400 200 720 44.7 
600 200 1,440 124.7 
800 200 2,880 284.7 

1,000 200 5,760 604.7 
1,200 200 11,520 1,244.7 
1,400 200 23,040 2,524.7 
1,600 200 46,080 5,084.7 
1,800 200 92,160 10,204.7 
4,000 2000 92,160 11,2604.7 

For the crystal plasticity (CP) model, material parameters identified through the genetic algo-
rithm listed in Table 3-4 are used for the simulations of both grain deformation only and com-
bined grain boundary deformation.  The primary units are: stress, MPa; length, mm; time, se-
conds.  The material parameters for the grain boundary cavitation model, listed in Table 3-7, were 
calibrated in [12] such the Norton-Bailey finite element simulation of the 3D cell model at 120 
MPa and 600oC produces the same tertiary creep response as the experimental data reported by 
Kimura et al. [23]. 

Table 3-7. Material parameters for traction-separation rate equations and units 

Property Value Units 
bη  53.6 10×  1MPa s mm−⋅ ⋅  

0a  0.0005 mm 

0b  0.005 mm 
D  194.444 10−×  1 1 3MPa s mm− −⋅ ⋅  
ψ  ( )15 36 75π = °  radians 

 

These simulations are performed on a high-performance Linux cluster with compute nodes 
having 20 cores with 3.1 GHz clock speed.  Each of the simulation cases requires different 
lengths of wall time for analysis completion.  For the CP model simulation with cavity growth 
suppressed and sliding enabled, a typical simulation with 1300 load steps required 13 hours to 
complete using eight cores.  The statistics reported by the WARP3D output file indicate that 80% 
of the wall time is spent within stress updates for the crystal plasticity model.  As shown in Sec-
tion 3.4.1, changes to the low-level subroutines of the CP code within the past year have substan-
tially decreased the run time. 
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First, three creep simulations are conducted at the applied stress levels of 100 MPa, 120 MPa, 
and 140 MPa for the CP only microstructural cell model.  Similar to the studies for the Norton-
Bailey model, the macroscopic average creep rate is computed using a finite difference calcula-
tion of the vertical nodal displacement of the top face of the cube from load step to load step.  
Figure 3-3 shows the variation of the creep rate during the simulation for each stress level.  To 
more clearly interpret the response of the cell, the response of the cell model during the first 10 
hours is plotted on a larger set of axes in Figure 3-3 (a), and the response under the constant ap-
plied stress is shown in Figure 3-3 (b). 

During the load ramp period, the strains developed in the cell remain essentially elastic be-
cause the applied stress is below the yield stress of the material at this strain rate (approximately 

2 1 6 11.0 10  hr 2.8 10  s− − − −× ≈ × ).  Thus, the observed strain rate is the elastic strain rate, which is 
proportional to the applied stress.  After the maximum remote stress is reached at 0.1 hour, the 
strain rate immediately drops to the viscoplastic strain rate level corresponding to the CP equa-
tions.  These strain rates exhibit a variation with applied stress, due to the exponential nature of 
the flow rule.  Also, the 140 MPa simulation reaches a minimum creep rate after about 20,000 
hours, indicating that the CP model captures the effects of both transient and steady state creep.  
However, the contribution observed for grain boundary sliding in Chapter 2 is typically larger 
than the reduction in creep rate shown in Figure 3-3 (b).  Here, the creep rate drops by a factor of 
10 over the duration from 10 hours to 10,000 hours.  More importantly, the stress dependence of 
the CP model under-predicts the variation in the experimental data [23].  This discrepancy may be 
due to missing features in the proposed model, such as the trapping of mobile or free dislocation 
density within subgrain structures that lead to slowly decreasing rates of plastic strain during tran-
sient creep. 

The second set of creep simulations incorporates the grain boundary mechanisms of sliding 
and cavity growth.  Figure 3-4 shows the results for creep strain rate as a function of time for the 
imposed stress levels of 100, 120, and 140 MPa.  The accuracy of the crystal plasticity model is 
quite striking for the 120 MPa load level, for which the interface material parameters were cali-
brated.  While the minimum creep rate is overpredicted by a factor of 5, the time to minimum 
creep rate is much closer, at about 1,000 hours compared to 2,000 hours in the experimental data.  
The computed solution is also reasonable for the 140 MPA stress level.  However, the creep strain 
rate for 100 MPa is overpredicted during much of the simulated creep lifespan, and the simulated 
strain rate variation is less compared to the experimental data.  Each of the computed strain-rate 
curves appear flatter than the corresponding measured curves, meaning that less evolution of the 
microstructure is captured in the model during early creep life.  As indicated by the results for the 
CP-only model, the characterized stress-dependent features of the crystal plasticity material flow 
rule require modification to capture this variation correctly. 

The overall trends shown in Figure 3-4 indicate that the current CP model overpredicts the 
creep strain rates experienced within the 3D cell model.  These preliminary results are impacted 
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by several factors.  First, the crystal plasticity material parameters are calibrated to match the 
stress-strain curves for older specimens of Grade 91 tested by Swindeman [45].  Second, the finite 
element models used for the calibration process contain only one solid element where the grains 
are approximated using the isostrain assumption.  Third, the material parameters for the grain 
boundary constitutive models as well as the NB model for the grains are calibrated together to 
match the minimum creep rate and tertiary response of the experimental data from Kimura et al. 
[23].  Nonetheless, an extensive study of different material parameter sets for the crystal plasticity 
and interface constitutive models did no produce an improved fit to the experimentally observed 
primary creep behavior while simultaneously matching the tensile stress-strain curves from Swin-
deman [45].  This discrepancy suggested that a different creep deformation mechanism is active 
at the lower stress levels that is not captured in the proposed model in Section 3.2.4, thereby 
prompting the investigation of the multi-mechanism model in Section 3.3.2.  

3.3 Crystal	plasticity	algorithmic	platform	and	multi-mechanism	constitutive	model	

Building from the crystal plasticity finite element platform in Section 3.2.2, the mechanisms 
for dislocation creep and diffusional creep outlined in Section 3.1 have been incorporated into the 
framework.  This section describes these components and the calibration of the constitutive pa-
rameters used in both deformation mechanisms.  Subsequently, parametric studies are performed 
in Section 3.4 to understand the relative effects of specific material parameters, plastic anisotropy 
arising from dislocation creep, and fraction of creep strain due to diffusional creep. 

3.3.1 Algorithmic	platform	for	crystal	plasticity	in	WARP3D	

Following the extension of the crystal plasticity subroutines in WARP3D to allow multiple 
hardening variables, several inefficiencies were observed in the code that detracted from the 
method’s performance.  These factors have been improved during the past year and are docu-
mented below. 

Many crystal plasticity constitutive models require the value of plastic slip rate   !γ
(s)  in multi-

ple equations.  Within the code, these slip rates were recomputed several times rather than com-
puted a single time and stored in local memory.  Now, the slip rates are calculated less frequently 
and instead stored in local memory.  Also, other coding inefficiencies have been corrected which 
before had led to creation of temporary arrays and other unneeded overhead.  These revisions 
provide a factor of speed up between 8 and 20. 

For the previous report term, a bookkeeping system of indices was created in order to refer-
ence the various quantities in the history vector.  This revision facilitates adding new features and 
simplifies the output of state variables to text files at the completion of load steps.  The bookkeep-
ing system was verified through extensive testing between four types of crystal plasticity models 
and slip systems to ensure that the conversion of the implementation was seamless.  Also, the 
FORTRAN package for nonlinear equation solving, “nleqslv” developed by Hasselman [29], was 
incorporated into the material subroutine.  This package contains both Newton and Broyden Se-
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cant method nonlinear equation solvers with line search and trust region modules.  These solution 
techniques helped to improve the robustness of the material subroutine. 

This reporting period, the bookkeeping system for the history vector was expanded to account 
for the pseudo diffusion model described in Section 3.3.2.  The existing Voce crystal plasticity 
model in WARP3D was revised to use a constant pre-factor in the power-law expression also de-
scribed in the following section.  Also, the nonlocal variable sharing for from the crystal plasticity 
solid elements to the grain boundary interface elements was verified through a series of small 
benchmark tests as well as calculations for the 100 grain cell model.  Several other modifications 
to the code were made in regards to other constitutive models.  Lastly, a verification suite of input 
files was developed to cover most of the functionality in the crystal plasticity subroutine, which 
includes the models described in Sections 3.2 and 3.3. 

With these changes, the crystal plasticity model in WARP3D now contains over 27,000 lines 
of code in comparison to less than 4,000 lines in 2013 prior to commencing the efforts described 
in this report.  Listings of the file sizes are given below. 

• mod_crystal.f, 2508 lines, previously 936 lines 

• mm10.f, previously 3463 lines 

• mm10_a.f, 4029 lines: routines for driving the stress update equations, routine for quadra-
ture point output quantities, and other utilities 

• mm10_b.f, 5855 lines: routines for constitutive models 

• mm10_c.f, 5911 lines: routines from solver package “nleqslv” and interfacing scripts 

• mm10_d.f, 475 lines: routine for history variable bookkeeping 

• mm10_e.f, 6295 lines: lists of hard-coded values for interaction matrix coefficients 

• mm10_f.f, 2052 lines: routines to support various states output options 

3.3.2 Multi-mechanism	model	for	creep	deformation	in	prior	austenite	grains	

Several revisions to the mechanism-based crystal plasticity constitutive equations were ac-
complished during the past year.  While some positive features were exhibited by the multi-
dislocation density-based model in Section 3.2.4, several drawbacks of this model were also iden-
tified.  First, the simulated creep curves did not capture the long duration of primary creep exhib-
ited in the experimentally measured response, which could affect the history of stress concentra-
tions at triple points and grain boundaries that lead to the eventual acceleration of creep strain 
rate.  Second, the stress-sensitivity of the model was less than the measurements of Grade 91, so 
that the differences of minimum creep strain rate were not well approximated at load levels other 
than 120 MPa in Figure 3-4.  Third, experimental data for minimum creep strain rate obtained by 
Kloc et al. [27] exhibit a change in deformation mechanism at applied stress below 100 MPa at 
600 C.  Figure 3-6 shows the variation of minimum strain rate for different stresses from two 
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Grade 91 creep test data sets; other sources show similar trends with power law relationship with 
1n =  below 100 MPa and 10n >  above 100 MPa.  Fourth, the previous model contained harden-

ing variables representing the dislocation density on each of the 48 BCC slip systems.  Several 
studies, such as Section 3.4.3, indicated that the local anisotropy of the crystal plasticity model 
did not have a significant effect on the bulk response of the cell model during creep simulations.  
Without local stress or strain measurements of crystal-scale deformation during creep tests, the 
added computational expense from tracking many state variables at each integration point was 
difficult to justify. 

In pursuit of understanding the deformation mechanism transition in Grade 91 at lower oper-
ating stresses at temperatures at or below 600 C, a multi-mechanism crystal plasticity model is 
proposed in equation (3.56) that is a combination of dislocation creep (3.57) and diffusional creep 
(3.58).  These two mechanisms, described subsequently, are assumed to occur simultaneously 
through motion of different types of defects (dislocations and atoms/vacancies), and thus the 
strain rates from each are summed together. 

Table 3-8. Combined mechanisms of crystallographic viscoplastic flow and diffusional creep for 
Grade 91 constitutive model 

Equation Number 

    
!t = Co : d − d p − d d( ) + Rw p RT t − tRw p RT  (3.56) – Unrotated Cauchy 

stress update 

    
d p = !γ (s)R pT "m (s)R p

s=1

nslip

∑  (3.57) – Plastic strain rate 

( ) ( )devd D Tη=d t  (3.58) – Diffusional strain 
rate 

   
!γ (s) =

!γ
"τ
τ (s)

"τ

n−1

τ (s)  (3.59) – Power-law slip rate 

  
!τ = τ y +τ w  (3.60) – Slip resistance 

   
!τ w = θ0 1−

τ w

τ v

⎛
⎝⎜

⎞
⎠⎟

m

!γ (s)

s=1

nslip

∑  (3.61) – Hardening rate 

( ) ( )0 expD T D Q kTη η η= −  (3.62) – Diffusional creep 
coefficient 
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Table 3-9. Nomenclature for Grade 91 model and physical units employed 

Property Description Units 

   !γ
(s)  Plastic slip rate 1s−  

 
!γ  Reference strain rate 1s−  
( )sτ   Resolved shear stress MPa 

 !τ  Mechanical slip resistance MPa 
yτ   Initial flow resistance MPa 

wτ   Immobilizing flow resistance MPa 

vτ   Saturation stress MPa 
n   Flow rule power law exponent dimensionless 

0θ   Flow curve modulus MPa 
m   Shape factor dimensionless 
Dη   Diffusional constant for linear viscous flow 1 1MPa s− −⋅  

0Dη  Reference diffusion coefficient 1 1MPa s− −⋅  
Qη   Activation energy Joules 
k  Boltzmann constant 1J K−⋅   

To represent dislocation creep according to the climb plus glide mechanism, a power-law ex-
pression (3.59) is adopted for the slip rate    !γ

(s)  on each of the 12 primary { }110 111  BCC slip 
systems.  A variant of this model existed in prior version of WARP3D [14] and was adjusted to 
have a constant pre-factor slip rate  

!γ .  Taylor hardening is assumed such that the drag stress or 
slip resistance  !τ  is equal for each slip system, and the strengthening portion of the resistance wτ  
evolves according to a Voce equation (3.61).  This model can account for either softening (de-
crease) or hardening (increase) of the slip resistance by specifying negative or positive values, 
respectively, of the saturation stress vτ  and flow modulus 0θ .  Studies for each parameter’s effect 
on the cell model creep response are presented in Section 3.4.2. 

The diffusional creep mechanism that is dominant at lower applied stress is represented 
through a linear viscous equation (3.58) in terms of the deviatoric part of the stress tensor and a 
generic diffusion coefficient expressed by an Arrhenius relation (3.62).  The diffusion constant is 
assumed to be independent of time and the strain history. Diffusional creep in simple polycrystal-
line materials, such as pure metals with limited solid solution strengthening, are traditionally cat-
egorized as one of three classes of mechanisms: Nabarro-Herring creep [51], Coble creep [52], 
and Harper-Dorn creep [53].  The term Nabarro-Herring creep corresponds to diffusion of atoms 
or vacancies through the lattice of grains due to differentials in deviatoric stress across the grain, 
while Coble creep refers to their diffusion along grain boundaries; the exact nature of Harper-
Dorn creep is still disputed [54].  The key factors for differentiating among this set of idealiza-
tions are the grain-size dependence of creep rate at fixed temperature and stress, and the relative 
values of inferred activation energies based on creep rates at the same stress but differing temper-
atures within a particular regime.  The complexity of microstructures in quenched and tempered 
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martensitic steels like Grade 91, which possess features at several length scales, has complicated 
the delineation of these mechanisms such that the literature has generally refrained from making 
definitive categorizations of the linear viscous/diffusional creep mechanisms in Grade 91. 

The isotropic linear viscous grain deformation term is a simplification of the likely physical 
mechanisms occurring in the material.  When dislocation motion within the grain is the mecha-
nism, local deviatoric stress does provide the driving force in terms of a resolved shear stress on 
the slip system, but in any diffusional mechanism, the key idea is that there is a lattice flux of 
mass (atoms going one way, or, equivalently, vacancies going the other), with “sources” and 
“sinks” marking the beginnings and endings of the respective lattice journeys.  The difference in 
chemical potential between the endpoints provides the driving force; usually the endpoints are 
taken to lie on internal (or external) interfaces such as grain boundaries, and a major part of the 
driving force is the normal stress on the boundary.  Atomic diffusion proceeds from lower-
normal-stress boundaries toward higher-normal-stress boundaries, where the plating out effective-
ly allows the energy of the system to lower.  Vacancy diffusion proceeds in the opposite direc-
tion, effecting the same results.   Deviator stress within a given grain does lead to differing nor-
mal stress on its respective grain boundary segments, so that the spirit of the geometrical effects 
of diffusion are reflected through the linear viscous strain-rate term, and the cell-averaged defor-
mations collect these responses in an essentially correct accounting.  However, the local effects of 
atomic diffusion on and near the grain boundaries (above and beyond those associated with cavity 
nucleation and growth) are not followed in detail. 

Nonetheless, these quenched and tempered alloys have very high dislocation densities and 
very small grain/subgrain sizes, especially when contrasted with more traditional larger-grain-size 
creep-resistant alloys.  Both of these microstructural features can enhance effective atomic diffu-
sivity: “pipe diffusion” along dislocation cores, and boundary diffusion at grain/subgrain interfac-
es.  Thus, there are good reasons to expect important roles of diffusional deformation in these ma-
terials, even at lower homologous temperatures than typically associated with “dominant” diffu-
sional mechanisms.  The use of linear viscous (isotropic) deformation in the grains is one way to 
account at certain larger scales for whatever detailed diffusional mechanisms are operative.  Fur-
ther investigation of these mechanisms using smaller length scale models is particularly warrant-
ed. 

3.3.3 Estimation	of	Voce	power-law	material	parameters	

The final set of calibrated material parameters for the power-law dislocation creep model 
were determined by fitting the creep response of the 3D cell model to experimental data.  Howev-
er, the determination of some model parameters could be made from simpler calculations. The 
recorded minimum strain rates from the Grade 91 tests by Kimura et al. [23] at 600 C are present-
ed in Figure 3-7, and the least-squares fit linear trend line is given as well.  The slope of the line is 
11.78, suggesting that the power-law exponent for the flow rule (3.59) dominant at higher stresses 
should be set to 12n = .  The constant coefficient of the trend line is about 31 16.56 10  hr− −× , 
which is a combination of the pre factor  

!γ  and slip resistance  !τ .  Comparing other crystal plas-
ticity constitutive models for Grade 91 [32] [55] suggested that a reasonable value for the slip re-
sistance is   !τ = 40 MPa .  Thus, this value was assigned to yτ  in a single finite element with single 
crystal orientation having Kocks Euler angles ( ) ( ), , 0,90,45ϕΨ Θ = , subjected to a constant 
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strain true rate of 7 18.52 10  hr− −× .  The value of  
!γ  was then adjusted until the axial stress of the 

finite element saturated at 110 MPa, which corresponds to the data in Figure 3-7.  The resulting 
value of   !γ = 9.55×10−8  hr−1  was subsequently employed during all later simulations of the 3D 
cell model creep studies in Chapter 6. 

Direct comparisons of the Voce power-law model with the Norton-Bailey isotropic creep 
model studied in Chapter 2 were also desired.  Thus, a similar tension test except using an iso-
strain model with 100 crystal orientations was performed at a strain rate corresponding to 120 
MPa. The resulting parameters are 5n = ,   !γ = 6.5×10−8  hr−1 , 40 MPayτ = , and 0vτ = . 

3.3.4 Estimation	of	diffusional	creep	parameters	

The calibration of the diffusional creep coefficient (3.58) was performed for stresses below 60 
MPa, where this mechanism is expected to be active.  The measured minimum creep strain rates a 
different applied stresses from Kloc [27] for Grade 91 are taken as a reference dataset for calibra-
tion. They report results from three different temperatures: 873 K, 923 K, and 973 K.  We there-
fore calibrate both the stress and temperature dependence of the diffusional creep rate.  At these 
low stress levels, the dislocation creep term is assumed to be negligible.  Also, the constitutive 
relation is a function of the deviatoric stress and does not contain crystallographic or hardening 
terms.  Therefore, a model with a single finite element is sufficient for calibrating the material 
parameters for the behavior after all grain boundary sliding has reached equilibrium. 

Figure 3-8 shows the creep strain rate versus applied stress for the experimental data as sym-
bols compared with the numerical curves from the best-fit parameters.  The MATLAB optimiza-
tion function “fminsearch” was employed to minimize the distance between the experimental and 
numerical curves at each temperature, with a higher weight applied to the 873 K data because this 
temperature is the focus of subsequent model studies.  The resulting parameters are 

17 1
0 MPa s1.52 10  Dη

− − −⋅×=  and 191.45 10 JQη
−×= , yielding a diffusion coefficient of 

1 1 13 MPa s9.19 10Dη
−− −⋅×=  at 873 K, which are reasonable values for diffusion and activation 

energy.  These values are taken as a starting point for the combined calibration studies in Chapter 
6 for the combined grain and grain boundary models. 

3.4 Crystal	plasticity	simulation	of	creep	using	3D	cell	model	

The most important assessment of the performance of the multi-mechanism crystal plasticity 
model is its ability to model the response of Grade 91 under creep conditions.  Therefore, these 
investigations align with the primary objective of creep life extrapolation for in-service conditions 
using a physically-based model. Similar to the previous report [12], the primary benchmark case 
for evaluating the performance of the crystal plasticity model for creep response is the 100 grain 
cell model discussed in Chapter 2 for the Norton-Bailey model.  This model is also employed for 
the simulations with the multi-mechanism crystal plasticity model described in Section 3.2.6 as 
well as for the final calibrations and sensitivity studies in Chapter 6. 
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3.4.1 3D	cell	model	description	and	creep	response	with	cavity	growth	suppressed	

The 3D cell model is a ( )20.2 mm  cube-shaped domain containing 100 grains that is meshed 
with 10,402 quadratic tetrahedral finite elements. Figure 3-2 (a) shows the arrangement of the 
grains within the cell. The crystal orientations in the 100 grains are sampled from a uniform tex-
ture.  The microstructure model contains 3,921 interface elements and 25,299 nodes in the model 
identical to the finite element meshes analyzed in Chapter 2, and the grain boundary behavior was 
specified as sliding plus cavity growth but nucleation was suppressed.  

The boundary conditions on the cell consist of symmetry conditions on the faces 0x = , 
0,y =  and 0z = .  The effectively incomplete periodic boundary conditions obtained through 

multi-point constraints (MPC) are applied on the other 3 faces of the cube.  For the simulations 
herein, a uniform pressure is applied on the 0.2z =  mm face to represent the tensile creep load-
ing.  The stress is increased linearly during 10 steps at 0.01 hours per step to reach maximum load 
at 0.1 hours.  This stress increase period is subsequently referred to as the “load ramp period”.  
The values of stress are set to 100, 110, 120, 140, and 160 MPa to correspond to the load levels 
investigated experimentally by Kimura et al. [23].  The temperature is set to 600oC.  The evolu-
tion of the internal state variables within the crystal plasticity model is expressed through stiff dif-
ferential equations.  Therefore, small time step sizes were required to achieve convergence of the 
nonlinear finite element equation solver.  Table 3-10 lists the time steps for the simulations. 

 
Table 3-10: Description of time steps within CP finite element simulation of creep. 

First series step 160 MPa 140 MPa 120 MPa 110 MPa 100 MPa 
1 0.01 0.01 0.01 0.01 0.01 
11 0.04 0.05 0.07 0.08 0.1 
101 0.06 0.08 0.126 0.152 0.2 
201 0.09 0.128 0.2268 0.2888 0.4 
301 0.135 0.2048 0.40824 0.54872 0.8 
401 0.2025 0.32768 0.734832 1.042568 1.6 
501 0.30375 0.524288 1.322698 1.980879 3.2 
601 0.45563 0.838861 2.380856 3.763670 6.4 
701 0.68344 1.342177 4.28554 7.150973 12.8 
801 1.02516 2.147484 7.713972 13.58685 25.6 
901 1.53773 3.435974 13.88515 25.81501 51.2 

1,001 1.53773 3.435974 13.88515 25.81501 51.2 
2,000 1,990.75 4,343.50 16,269.1 31,255.3 61,429.1 

These simulations are performed on a high-performance Linux cluster with compute nodes 
having 20 cores with 3.1 GHz clock speed.  Each of the simulation cases requires different 
lengths of wall time for analysis completion.  For the CP model simulation with cavity growth 
suppressed and sliding enabled, a typical simulation with 2000 load steps required about hours to 
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complete using ten cores.  This is a speed up of more than ten times compared to the simulations 
from the multi-dislocation density-based model [12]. 

Table 3-11. Material parameters for multi-mechanism crystal plasticity (CP) model 

Property Value Units 
E  150,000  MPa 
ν  0.285  dimensionless 
yτ  40.0 MPa 

vτ  12.0 dimensionless 
n   12 dimensionless 

0θ   800.0 MPa 
m   1 dimensionless 
Dη   91.2 10−×  1 1MPa s− −⋅  

 

Table 3-12. Material parameters for traction-separation rate equations and units 

Property Value Units 
bη  61.0 10×  1MPa hr mm−⋅ ⋅  
user
linK  81.0 10×  MPa/mm 

To focus on the creep behavior of the multi-mechanism crystal plasticity model, creep simula-
tions are performed for each of the load levels with the grain boundary cavity growth terms sup-
pressed.  The set of material parameters are listed in Table 3-11 and Table 3-12, which were cali-
brated for the primary creep regime alone.  Figure 3-9 presents the evolution of creep strain rate 
for the cell model at each load level.  Notice that the relation of strain rate to time is closely cap-
tured for each of the load levels during the transient or primary creep regime. 

The chosen parameters include both hardening in the Voce model as well as moderate sliding 
along grain boundaries.  Previous studies [12] indicated that grain boundary sliding is necessary 
to facilitate cavity growth, while more recent studies conducted in Chapter 4 highlight that rea-
sonable values for the viscosity are required for numerical stability.  Also, another study in Sec-
tion 6.3 shows that the inclusion of grain boundary sliding leads to slightly greater strain rates in 
the cell model.  Thus, the combination of the viscosity and the crystal plasticity parameters were 
calibrated together.  Nonetheless, these parameters could be found separately before adjusting the 
grain boundary cavity growth parameters to match the tertiary creep regime, which is an ad-
vantage of the model. 

The power-law exponent of 12 for the dislocation creep model provides the correct stress-
sensitivity to match the experimental data from Kimura et al. [23].  However, none of the creep 
curves actually reach saturation in the Voce model; each of the curves is terminated because 2000 
time steps have been completed.  Other sets of material parameters may also produce results that 
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match closely to portions of the experimental data, such as those in Section 3.4.4, but the tertiary 
portion of the material response is best captured with these parameters, as shown later in Section 
6.2.  The calibrated Voce parameters produce a hardening response, or an increase to plastic slip 
over time.  This behavior may seem to conflict with the cyclic softening during fatigue tests and 
flow softening during tensile tests at high temperatures for Grade 91 [12].  The authors attribute 
the extended period of primary creep with decreasing strain rate at constant load to the reduction 
of initial mobile dislocation density that becomes immobilized against microstructural obstacles 
such as subgrain boundaries or precipitates.  Mobile dislocation density, initially present after the 
material processing, is responsible for plastic strain according to the Orowan equation   !γ = ρmbv ; 
therefore, a reduction in mobile dislocation density fraction would lead to overall lower creep 
rates in the grains. 

For all of the load levels 100 to 160 MPa, the maximum discrepancy in the transient strain 
rate is a factor of two, and the simulated and experimental creep curves overlap for much of the 
strain history prior to onset of tertiary creep in the measured curves. 

3.4.2 Effect	of	dislocation	creep	material	parameters	on	cell	model	response	

Several parameter studies were conducted on the 3D cell model to understand the effect of 
each of the main crystal plasticity constitutive parameters on the bulk deformation of the cell: ini-
tial flow stress yτ , saturation stress vτ , flow curve modulus 0θ , and rate-sensitivity exponent n . 

The first study was performed using parameters calibrated to match the Norton-Bailey model 
in Chapter 2 for the iso-strain tensile test:   !γ = 6.5×10−6  hr−1 , 40 MPayτ = , 5n = , and 1m = .  
This provides a reference point for comparing the isotropic and crystallographic creep models. 
Six combinations of the saturation stress and flow modulus are considered: (1) 0 MPavτ = , 

0 400 MPaθ = − ; (2) 2 MPavτ = − , 0 400 MPaθ = − ; (3) 4 MPavτ = − , 0 40 MPaθ = − ; (4) 
4 MPavτ = − , 0 400 MPaθ = − ; (5) 4 MPavτ = − , 0 4000 MPaθ = − ; and (6) 10 MPavτ = − , 

0 400 MPaθ = − .  The negative values of vτ  are expected to lead to softening material response, 
and thus increased creep strain rate at constant stress.  Softening was initially investigated be-
cause most of the experimental data for tensile tests at higher strain rates exhibit flow softening, 
as shown in Section 3.2.4 particularly for higher temperatures at or above 600 C.  The material 
parameters for the multi-dislocation density based model were also calibrated to exhibit softening 
in fatigue simulations [12].  For these simulations, the grain boundary model was incorporated 
with sliding and cavity growth effects but nucleation suppressed: 1100 MPa hr mmbη

−= ⋅ ⋅ , 

0 0.0005 mma = , 0 0.005 mmb = , 75ψ = ° , and  16 1 1 38.0 10  MPa hr mmD − − −= × ⋅ ⋅ .  Note that 
these parameters are such that cavity growth starts from the beginning of the simulations. 

Figure 3-10 shows the variation of average creep strain rate in the loading direction for an ap-
plied stress of 100 MPa on the 3D cell model.  The flow modulus 0θ  appears to have the largest 
effect on the onset of tertiary creep.  Other than the non-softening parameter set, the case with 

0 40 MPaθ = −  has the lowest overall strain rates. Meanwhile, the simulation with 
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0 4000 MPaθ = −  has the fastest strain rates and actually diverges before the tertiary behavior is 
reached. The effect of the saturation stress vτ  is somewhat different.  For increasing levels of sof-
tening, the period from secondary to tertiary creep becomes more gradual, compared to the sharp-
er curves without softening. 

Another representative set of simulations were performed with grain boundary sliding sup-
pressed 9 11 10  MPa hr mmbη

−= × ⋅ ⋅  and an applied stress of 140 MPa.   The Voce model parame-

ters are set to:   !γ = 9.55×10−8  hr−1 , 12n = , and 1m = .  Hardening behavior of the flow stress is 
considered in Figure 3-11 with three different combinations of the slip resistance and saturation 
vτ ; the flow modulus is fixed to 0 4000 MPaθ = .  Note that the final slip resistance 

   
!τ = τ y +τ v = 37 MPa  is identical for all three cases; hence, it is logical that the average strain rate 

of all simulations converges to the same value at long durations.  Thus, the parameter y vτ τ+  
specifies the steady state creep rate reached by the model; note that the accumulated strain at a 
given time instant will be different due to initial transients.  Also, the lower yield stress 24yτ =  
MPa produces the highest initial strain rates after the load ramp period is completed.  A further 
alteration of the 25yτ =  MPa, 12vτ =  MPa case is performed with a reduced flow modulus 

0 400 MPaθ = , and Figure 3-12 examines this effect on the history of creep strain rate at 140 
MPa load level.  The initial transient strain rate of both cases is fairly similar.  Also, the final 
steady strain rate of 5 11 10  hr− −×  is the same for both cases, meaning that the modulus does not 
impact the final converged strain rate.  However, the evolution toward the minimum rate is much 
faster for the larger modulus case.  Note that the slope both curves during the intermediate portion 
of primary creep are similar through; this slope and the relative duration of constant-appearing 
rate of strain-rate-reduction regime are likely attributed to the shape parameter m  in the Voce 
model. 

3.4.3 Effect	of	spatial	arrangement	of	crystal	orientations	

In this section, the influence of the spatial arrangement of grain lattice orientations on the cell 
average creep strain rate and the local distribution of stress is investigated.  For most of the simu-
lations in the report, a specific set of orientations from a uniform texture are assigned to the 100 
grains of the cell model in an identical fashion, so that results on identical microstructures can be 
used to compare the effects of different material parameters and loading conditions.  Therefore, 
knowing the sensitivity of the computed results with respect to the cell geometry and crystal ori-
entation is important.  Herein, the list of 100 orientations are assigned in five different spatial ar-
rangements to the cell model, and the creep test at 120 MPa was conducted using the material pa-
rameters from Table 3-11 with cavity growth suppressed. 

Figure 3-13 contains each of the five creep strain rate versus time curves for the different in-
stantiations of texture in the microstructure.  All curves are nearly identical, with the largest dif-
ferences appearing near the end of the simulation. At time 410  hrt = , across the simulations, the 
maximum strain rate is 7 18.39 10  hr− −× , the minimum rate is 7 17.51 10  hr− −× , and the average is 

7 18.01 10  hr− −× , indicating the difference is about 5%. 
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Figure 3-14 provides histograms of the Mises stress field in each element of two simulations 
with different spatial arrangements of orientations.  The tails of the two distributions are fairly 
similar, while the frequencies of stresses in the intermediate levels exhibit somewhat distinct 
character. 

Thus, the distribution of orientations had a very mild effect on the bulk cell average creep rate 
during the primary and secondary creep regimes.  This conclusion is logical for random texture; 
larger sensitivity might occur in the tertiary creep regime due to the effect of stress concentrations 
on the local cavity growth rate.  Also, changes to the grain and grain boundary geometry may in-
duce a larger change to the cell response, such as the results for periodic microstructures present-
ed in Chapter 5.  In particular, the ratio of grain boundary surface area to grain volume within the 
cell model is a critical parameter to match with the experimental characterizations of Grade 91 
steel.  Setting the average grain diameter to be similar to the measured diameter of prior austenite 
grains is important to achieve an appropriate relative contribution of grain bulk GB deformation 
in the final model 

3.4.4 Effect	of	grain	diffusional	creep	at	lower	load	levels	

Determining the prominent deformation mechanisms for Grade 91 at typical operating stress 
is a major objective of this project.  Therefore, the creep behavior of the cell model was compared 
when the diffusional creep term was active and inactive within the grains.  These effects are iso-
lated by suppressing cavity growth as well as grain boundary sliding.  The remaining parameters 
in the crystal plasticity model were adjusted to closely match the experimental data from Kimura 
et al. [23].  The values are:   !γ = 9.55×10−8  hr−1 , 25 MPayτ = , 12n = , 1m = , 12 MPavτ = , 

0 4000 MPaθ = , and 9 11 10  MPa hr mmbη
−= × ⋅ ⋅ .  Also, the simulations were conducted using an 

earlier version of the grain constitutive model where the diffusional creep was partitioned onto 
the BCC slip systems so that 

   
!γ (s) = !γ Voce

(s) + !γ Diff
(s)  with 

   
!γ Diff

(s) = Dγ τ
(s)  rather than the isotropic devia-

tor-based diffusional creep model (3.56) with the deformation rate tensor vp p d= +d d d .  The 
qualitative behavior of these two equations for the cell average creep strain rate are similar, but 
the simpler constitutive model was adopted because the diffusional deformation could not be 
readily justified to be linked to crystallographic directions.  The value of 

9 1 15.9 10  MPa hrDγ
− − −= × ⋅  is used herein. 

Figure 3-15 and Figure 3-16 examine the evolution of the average creep strain rate as a func-
tion of time at various applied loads when diffusional creep is included and excluded, respective-
ly.  The curves at the higher stresses 140 and 160 MPa are nearly identical on the logarithmic 
scale.  The creep rate curve for 120 MPa is somewhat higher for the diffusional creep case in Fig-
ure 3-15.  The larger minimum strain rates are most evident for the lower stresses of 100 and 110 
MPa.  These effects on the simulated creep strain rates can be explained by considering the poly-
nomial form of the viscoplastic flow rule (3.59).  For large applied stress, the value of the poly-
nomial 12x  is much greater than x , but at lower stresses the linear polynomial term becomes 
greater.  Since the two deformation modes are added together in series and the polynomial terms 
have different prefactors, there is expected to be a stress level where both terms have equal mag-
nitude.  The uniaxial tensile stress at which this transition is evident in the experimental data [27] 
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is about 100 MPa.  Below this value, the slope of the curve on logarithmic scale is approximately 
unity. 

The significant increase in the minimum creep rate at the 100 MPa load level is shown in Fig-
ure 3-17.  The response of the cell models with and without the diffusional term is identical up to 
about 100 hours.  Recall that the diffusional creep term has a constant flow resistance or diffusivi-
ty, such that the primary or transient creep regime should only be affected at later times in the 
simulation.  The minimum strain rate is reached at about 100,000 hours.  Note that cavity growth 
is suppressed, which delays the onset to minimum.  Also, these simulations were performed with 
nonlinear kinematics in WARP3D in contrast to most of the other simulations in this report, 
which explains why the strain rate begins to increase after the minimum is reached.  These accel-
erations occur several magnitudes of time later than the experimental data and can thus be ig-
nored.  The minimum strain rates with and without diffusional creep are 7 16 10  hr− −×  and 

7 12 10  hr− −×  respectively, so that the diffusional mechanism accounts for about twice the flow 
compared to the crystallographic dislocation glide mechanism. 

Figure 3-18 provides a comparison of the minimum strain rate as a function of applied stress 
for the two models and the experimental data from Kimura et al. [23].  The cell model response 
including the diffusional creep is consistently greater than the experimental data points for all 
stress levels while the Voce crystal plasticity model underpredicts the strain rates for the lower 
stresses levels.  Thus, accounting for this shift in dominant mechanism is important for capturing 
the response of the material at service load levels. 

Next, the mechanical fields within the microstructure are examined at different applied stress 
levels to better understand the features of the two deformation mechanisms.  Several simulations 
of the cell model are performed, with cavity growth suppressed and free sliding, for the following 
stresses: 5 MPa, 10 MPa, 60 MPa, 100 MPa, 125 MPa, and 135 MPa.  The material parameters 
are set to:   !γ = 2.35×10−6  hr−1 , 40 MPayτ = , 10n = , 1m = , 0 MPavτ = , 0 400 MPaθ = , 

9 1 15.2 10  MPa hrDγ
− − −= × ⋅ , and 2 11 10  MPa hr mmbη

−= × ⋅ ⋅ . 

Simulations were carried out for each applied stress until the cell average strain rate became 
saturated and no longer decreased.  Then, fringe plots of the von Mises stress field in each of the 
finite elements of the microstructure were examined.  The ratio of the maximum stress across all 
elements to the applied stress is taken as a measure of the strength of stress concentrations within 
the cell model. The value of this ratio are listed in Table 3-13.  Higher stress concentrations ap-
pear for the lower applied stresses, when the diffusional creep term is dominant.  Recall that the 
cell model simulations are traction-driven problems and the strain rate is computed.  However, 
compatibility is enforced within the cell, so that material regions with locally higher strain rates 
will quickly be constrained by regions that are deforming more slowly.  Then, the creep rate 
across the cell must be reasonably similar. Now, for larger stress exponents, a small change in 
stress (due to a concentration) would lead to larger strain rates that would be constrained by 
neighboring material.  At lower exponents, a greater differential stress could be carried at a point 
before the strain rate increases significantly to lead to incompatibilities.  This explanation appears 
consistent with the observed trends of stress concentration factors. 
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Table 3-13: Ratio of maximum von Mises stress to cell average stress 

Stress (MPa) 5 10 60 100 125 135 
Concentration Factor 4.1 4.1 2.4 2.2 2.1 2.1 

Fringe plots of the von Mises stress field are shown for selected applied stress levels in Figure 
3-19.  The time of the snapshot in each simulation corresponds to the minimum strain rate. The 
highest local stress values appear at consistent locations for all load levels, since the crystal orien-
tations are the same for all models as well as all material parameters.  However, the gradation of 
contours is largest for the 10 MPa applied stress case.  Also, Figure 3-20 provides fringe plots for 
the effn  scalar field computed from the formulas developed in Section 3.2.5.  Recall that effn  is 
one of the nonlocal fields required by the cavity growth model. At the low 10 MPa stress and high 
125 MPa stress, the computed exponent effn  is constant across the entire cell, meaning that a sin-
gle mechanism dominates everywhere.  However, at 60 MPa, much of the domain exhibits 

1effn =  while locations experiencing higher von Mises stresses exhibit 5effn ≥ . In the actual 
Grade 91 material, the local stress and strain state near a cavity population on a grain boundary is 
what is expected to drive the cavity evolution.  Therefore, capturing the heterogeneity of these 
fields is one benefit that the cell model provides over reduced order models that smear out the 
heterogeneities. 

3.5 Summary	of	crystal	plasticity	modeling	framework	

This section summarizes the progressive developments of the crystal plasticity modeling 
framework for Grade 91 during this project.  The constitutive equations account for anisotropic 
straining due to dislocation glide on preferential planes in the crystal lattice.  The CP model con-
tains terms for dislocation creep by climb and glide that are dominant at higher applied stress and 
diffusional creep that are dominant at lower applied stress.  Finite element simulations are per-
formed for the 3D cell model to investigate the creep response of Grade 91 and to understand the 
influence of various constitutive parameters. 

The following points summarize the key developments related to the CP modeling framework 
and the key results of the simulations. 

• The crystal plasticity material model platform in WARP3D developed prior to 2013 is ex-
tended to the multi-variable case by generalizing the framework of the constitutive equa-
tions and also the relevant subroutines in the code.  The FORTRAN package for nonlinear 
equation solving, “nleqslv” [29] is incorporated into the material subroutine, providing 
both Newton and Broyden Secant method nonlinear equation solvers with line search and 
trust region modules.  Also, the package provides features such as finite difference calcu-
lation of the Jacobian matrix and a checking script for validating the user-defined Jacobi-
an.  These enhancements add robustness to the nonlinear equation solver and also stream-
line the implementation of new constitutive models.  A bookkeeping system of indices 
was created in order to reference the various quantities in the history vector and to simpli-
fy the output of state variables to text files in order to handle increasing complex constitu-
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tive models.  With these changes, the crystal plasticity model in WARP3D now represents 
nearly 27,000 lines of code in comparison to less than 4,000 lines in 2013 prior to com-
mencing the efforts described in this report. 

• A multi-variable dislocation density-based model was proposed for the body-centered cu-
bic (BCC) systems of martensitic steel.  The flow rule captures two key features of the 
material mechanisms.  First, the lattice resistance or Peierls stress is considered to be the 
most significant short-range obstacle to dislocation motion. Second, during creep at high 
temperatures under sustained lower stresses, the motion of dislocations may be described 
through a glide-climb mechanism.  The material parameters in the crystal plasticity model 
are calibrated against the experimental tensile data from Swindeman [45] for Grade 91.  
Subsequently, the creep response was investigated through the 3D cell model for two ex-
treme cases: (a) grain boundary sliding and cavity growth suppressed by removing the in-
terface elements in the mesh, and (b) sliding and opening mechanisms active along grain 
boundaries.  Three creep simulations were conducted at the applied stress levels of 100 
MPa, 120 MPa, and 140 MPa each at o600 C .  For the case with active sliding and cavity 
growth, the simulated creep curve for 120 MPa load is rather close to the experimental da-
ta, since the interface material parameters were calibrated at 120 MPa.  However, the re-
sponse for other load levels is less accurate, and all simulated creep curves appear flatter 
than the corresponding measured curves, meaning that less evolution of the microstructure 
is captured in the model during early creep life.  This discrepancy suggested that a differ-
ent creep deformation mechanism is active at the lower stress levels that is not captured in 
the first proposed model. 

• In pursuit of understanding the deformation mechanism transition in Grade 91 at lower 
operating stresses at temperatures at or below  600°C , a multi-mechanism crystal plasticity 
model is proposed that is a combination of dislocation creep and diffusional creep.  To 
represent dislocation creep according to the climb plus glide mechanism, a power-law ex-
pression is adopted for the slip rate on the 12 primary BCC slip systems.  The diffusional 
creep mechanism that is dominant at lower applied stress is represented through a linear 
viscous relation in terms of the deviatoric part of the stress tensor and a generic diffusion 
coefficient expressed by an Arrhenius relation.  The power-law exponent and reference 
strain rate in the dislocation creep model were estimated by fitting the response of a single 
finite element model under constant imposed strain rate to the minimum creep strain rate 
test results for Grade 91 recorded in [23].  The diffusional creep coefficient was estimated 
by least-squares fit of the linear viscous diffusional creep relation to the measured mini-
mum strain rates at lower applied stresses given by Kloc et al. [27] . 

• Creep simulations were conducted for the 3D cell model with the multi-mechanism crystal 
plasticity model combined with grain boundary sliding.  The grain boundary sliding vis-
cosity and normal direction stiffness were selected based on studies in Chapter 2 and Sec-
tion 6.2, and then the crystal plasticity model parameters were such that the cell model 
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produced creep response in close agreement with the transient portion of the creep curves 
in [23].  For all of the load levels 100 to 160 MPa, the maximum discrepancy in the tran-
sient strain rate is a factor of two, and the simulated and experimental creep curves over-
lap for much of the strain history prior to onset of tertiary creep. 

• The influence of the spatial arrangement of grain lattice orientations on the cell average 
creep strain rate and the local distribution of stress was investigated by considering five 
different spatial arrangements of the crystal lattice orientations in the grains of the cell 
model. These orientations are sampled from a random texture.  For the applied load of 120 
MPa at the elapsed time 410  hrt = , the maximum strain rate across the 5 simulations is 

7 18.39 10  hr− −× , the minimum rate is 7 17.51 10  hr− −× , and the average is 7 18.01 10  hr− −× , 
indicating that the difference is about 5%. The distribution of Mises stress over all finite 
elements in the cell model for the two spatial arrangements have similar tails but slightly 
different intermediate ranges.  Thus, the distribution of orientations for random texture 
had a very mild effect on the bulk cell average creep rate during the primary and second-
ary creep regimes.  Changes to the grain and grain boundary geometry may induce a larg-
er change to the cell response, such as the results for periodic microstructures presented in 
Chapter 5. 

• Several parameter studies were conducted on the 3D cell model to understand the effect of 
each of the main crystal plasticity constitutive parameters on the bulk deformation of the 
cell: initial flow stress yτ , saturation stress vτ , flow curve modulus 0θ , and rate-sensitivity 
exponent n .  The flow modulus 0θ  had a larger effect on the time to onset of tertiary 
creep compared with vτ .  Also, the parameter y vτ τ+  specifies the steady state creep rate 
reached by the model.  Also, the creep behavior of the cell model was compared when the 
diffusional creep term was active and inactive within the grains.  Creep strain rate curves 
at the higher stresses 140 and 160 MPa are nearly identical on the logarithmic scale 
whether or not diffusional creep is included.  The larger minimum strain rates are most ev-
ident for the lower stresses of 100 and 110 MPa.  The response of the cell model at the 
100 MPa load level with and without the diffusional term are identical up to about 100 
hours.  The minimum strain rates with and without diffusional creep are 7 16 10  hr− −×  and 

7 12 10  hr− −×  respectively, so that the diffusional mechanism accounts for about twice the 
flow compared to the crystallographic dislocation glide mechanism.  Examination of 
fringe plots for Mises stress at lower applied stresses (10 MPa and 60 MPa) indicate that 
larger stress concentrations (factor of 4) occur at lower load levels on the cell model com-
pared to higher load levels (factor of 2).  Larger stress concentrations are likely accommo-
dated in the grains when the linear viscous diffusional creep term is dominant compared to 
the power-law exponent of 12 in the dislocation creep regime.  In the actual Grade 91 ma-
terial, the local stress and strain state near a cavity population on a grain boundary is what 
is expected to drive the cavity evolution.  Therefore, capturing the heterogeneity of these 
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fields is one benefit that the cell model provides over reduced order models that smear out 
the heterogeneities. 

3.6 Chapter	figures	
 
 

 
Figure 3-1. Stress-strain curves of the boundary value problem solved by GA vs. the experimental 

data by Swindeman. 
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Figure 3-2. Representation of 3D cell model for CP model creep simulations: fringe plot of first 
Kocks Euler angle to indicate orientation of crystal lattice. 

 

 
   (a)                                                                            (b) 

Figure 3-3. Macroscopic cell strain rate (/h) versus model time (h) for cell model without grain 
boundaries as a function of remote applied stress. (a) early portion of the creep response; (b) 
later portion of the creep response. 
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Figure 3-4. Macroscopic cell strain rate (/h) versus model time (h) for cell model with cavity growth 
and with sliding on grain boundaries as a function of remote applied stress. 

 

 

Figure 3-5. Macroscopic cell strain rate (/h) versus model time (h) produced by the crystal plasticity 
model within the grains. 
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Figure 3-6. Variation of minimum creep strain rate with respect to applied stress from creep tests 
for Grade 91 at 600 C from Kimura et al. and Kloc et al. exhibiting mechanism regimes 
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Figure 3-7. Variation of minimum creep strain rate at lower stress levels from calibration of disloca-

tion creep parameters against experimental data from Kimura et al. at 600 C 

 

 
Figure 3-8. Variation of minimum creep strain rate at lower stress levels from calibration of diffu-

sion coefficient against experimental data from Kloc et al. at several temperatures  

 



FY17	Status	Report	on	the	Micromechanical	Finite	Element	Modeling	of	Creep	Fracture	of	Grade	91	Steel	
September	2017	
 

ANL-ART-95	 96	 	

 
Figure 3-9. Macroscopic cell strain rate (/h) versus model time (h) for cell model using calibrated 

material parameters including dislocation creep and diffusional creep within the grains and 
sliding along grain boundaries, compared to experimental data from Kimura et al. 
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Figure 3-10. Macroscopic cell strain rate (/h) versus model time (h), comparison of response for sof-
tening behavior in the dislocation creep model with cavity growth along grain boundaries at 
load level 100 MPa; the legend indicates the saturation stress vτ  as “Tv” and the flow modu-
lus 0θ  as “Qo” 
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Figure 3-11. Macroscopic cell strain rate (/h) versus model time (h), comparison of response for dif-
ferent initial flow resistance and constant total saturation resistance at load level 140 MPa 
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Figure 3-12. Macroscopic cell strain rate (/h) versus model time (h), comparison of response for dif-
ferent values of flow modulus 0θ  at load level 140 MPa 
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Figure 3-13. Macroscopic cell strain rate (/h) versus model time (h), creep response from cell model 
with five different spatial arrangements (shuffling) of crystal orientations at load level 120 
MPa 
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            (a)                                                                         (b) 

Figure 3-14. Frequency distribution of Mises stress field within grain finite elements of the cell mod-
el at applied load level 120 MPa: (a) first orientation arrangement; (b) second orientation 
arrangement 
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Figure 3-15. Macroscopic cell strain rate (/h) versus model time (h) for cell model using material pa-
rameters excluding diffusional creep, compared to experimental data from Kimura et al. 
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Figure 3-16. Macroscopic cell strain rate (/h) versus model time (h) for cell model using material pa-
rameters including diffusional creep, compared to experimental data from Kimura et al. 
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Figure 3-17. Macroscopic cell strain rate (/h) versus model time (h), creep response from cell model 
with and without the diffusional creep component at load level 100 MPa 



FY17	Status	Report	on	the	Micromechanical	Finite	Element	Modeling	of	Creep	Fracture	of	Grade	91	Steel	
September	2017	
 

	 105	 ANL-ART-95	

 

 

Figure 3-18. Variation of minimum creep strain rate with respect to applied stress from cell model 
with and without the diffusional creep component in comparison to experimentally obtained 
rates for Grade 91 tests at 600 C from Kimura et al. 
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              (a)                                                                (b)

 
(c) 

Figure 3-19. Mises stress field in cell model at time of minimum strain rate for various applied 
stresses: (a) 10 MPa applied stress at time 2400 hour; (b) 60 MPa applied stress at time 1050 
hour; (c) 125 applied stress at 60 hour 
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              (a)                                                                (b) 

 
(c) 

Figure 3-20. Effective power-law exponent in cell model at time of minimum strain rate for various 
applied stresses: (a) 10 MPa applied stress at time 2400 hour; (b) 60 MPa applied stress at 
time 1050 hour; (c) 125 applied stress at 60 hour 
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4 Study	of	Numerical	Issues	from	Grain	Boundary	Interfacial	Stiffness	

Several challenges were encountered during the numerical modeling of the microstructural re-
sponse of Grade 91, most often manifesting as divergence of the Newton-Raphson equation solv-
er at the domain level or material integration level. One of the most significant problems involved 
the quality of the interfacial traction fields obtained during preliminary studies. As described in 
Section 2.2.1.3, the normal component of the traction computed by the interface elements could 
exhibit oscillatory behavior with an order of magnitude greater that the applied stress level, par-
ticularly during the loading period and beginning portion of primary creep. This behavior is very 
detrimental to the accurate determination of the onset of cavity nucleation and growth by the cell 
model. 

Therefore, an investigation was conducted to determine the relative effect of key model fea-
tures on the appearance of oscillations in the traction field components: ratio of normal to tangen-
tial interface stiffness, polynomial order of finite element functions, and numerical formulation of 
impenetrability constraint. 

4.1 Interface	traction	model	description	

Relatively few numerical studies have been performed using finite element modeling of rep-
resentative volume elements containing crystal plasticity with the grains and interface elements 
along grain boundaries. Most such studies have focused on brittle fracture or crack propagation 
rather than on ductile void growth [56] [57] [58]. Earlier studies on two-dimensional microstruc-
tures considering elasticity [59] and power-law creep [60] revealed that heightened stresses can 
occur at triple junctions between grains when low sliding resistance is assumed within the mod-
els. Also, a wide body of literature exists on finite element contact mechanics modeling and the 
large stress concentrations that emerge when resolving normal and tangential contact tractions. 
Thus, a detailed study of the microstructural cell model’s behavior under simplified interface con-
stitutive models seemed justified to understand the phenomena reported in Section 2.2.1.3 regard-
ing oscillatory numerical traction fields. 

The 100 grain cell model is again considered as the testbed geometry. To focus on the inter-
face behavior, linear isotropic elastic properties were assigned to all grain with 150E =  GPa and 

0.285ν = . Symmetry boundary conditions were applied on the planes intersecting ( )0,0,0 , and a 
uniform displacement 0.001xu =  mm is applied on the 0.2x =  mm face such that the average uni-
axial stress is approximately 750 MPa. The MATLAB finite element code mentioned in Section 
3.2.1 was used for all simulations in this section in order to have a common platform and elimi-
nate other sources of discrepancy.  

Four different element types are compared: quadratic tetrahedral, linear tetrahedral, B-bar 
patch tetrahedral, and linear hexahedral. The B-bar patch formulation for tetrahedral elements in-
volves an averaging of the volumetric strain over a patch of linear elements in order to remove 
volumetric locking [61] [62]. This element type, consisting of 8 linear elements grouped into a 
macro element with identical node structure or connectivity as a single quadratic tetrahedral ele-
ment, was being considered as an option for WARP3D in order to combine linear polynomial in-
terface elements with locking-free volumetric elements. A linear elastic version of the formula-
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tion from [61] was implemented into the MATLAB code for this study. The finite element mesh 
for the tetrahedral meshes are topologically identical and have the same number of nodes. The 
hexahedral mesh is obtained by subdividing each quadratic tetrahedral element into four linear 
hexahedral elements, which introduces a new node for each element face in the model. Otherwise, 
all meshes have very similar numbers of nodes and degrees of freedom. 

Two interface element formulations were compared. The first formulation is termed as “inter-
face penalty method” and uses a linear relationship between the traction field T  and the dis-
placement gap field 

  u!"# $%&  along the interface with different penalty or stiffness coefficients for the 
normal and tangential directions, referred to as nK  and tK  respectively. The tangential stiffness is 
meant to approximate the sliding behavior which is time dependent (viscous) for the microstruc-
ture simulations. Equal penalty values for tension and compression were employed, using just nK
, and thus the model is linear. The second formulation uses the same tangential penalty function 
coupled with a Discontinuous Galerkin (DG) treatment of the normal traction component [63] 
[64] [65]. The DG method is variationally consistent, meaning that the numerical solution con-
verges toward a solution with zero penetration or gap without requiring an extremely large penal-
ty parameter. The traction field is evaluated from a numerical fluxes as the weighted average of 
tractions from the continuum stress field along the interface: 

   Tn = n ⋅σ ⋅n{ }+α n u ⋅n!"# $%&  with 

 
n ⋅σ ⋅n{ } = n+ ⋅ δ +σ + +δ −σ −⎡⎣ ⎤⎦ ⋅n

+   and the weights summing to unity. Details for calculating the 
weights and the penalty parameter as a function of element shape and size are given in [63]. 

4.2 Model	response	for	low	tangential	stiffness	

Most of the preliminary creep studies for Grade 91 in this project considered either free slid-
ing (low viscosity) or no sliding (high viscosity). Therefore, the first testbed models with linear 
interface stiffness considered low tangential stiffness 1.0tK =  MPa/mm. The normal direction 
penalty parameter was set much larger, as 61.0 10nK = ×  or 81.0 10nK = ×  MPa/mm. Figure 4-1 pre-
sents the axial displacement field xu  for the quadratic tetrahedral element mesh. Discontinuities 
in the field are clearly presented along grain boundaries, both for boundaries parallel to the load 
as well as perpendicular. The noticeable jumps on the perpendicular faces could be an indicator 
that (1) the normal stiffness is too low and elastic interface gaps are opening up or (2) some grain 
boundary elastic “sliding” has occurred such that two points adjacent in the current configuration 
are not adjacent in the reference configuration. 

Next, the variations in the elemental stress field are compared for different formulations with 
different values of nK . Figure 4-2 examines the stress field for the quadratic element mesh with 

61.0 10nK = × . Note that the element-average field is plotted, so that each triangle with a different 
color represents the face of a single finite element. The extreme values on the legend are set to the 
maximum and minimum stresses computed for this particular solution. The volume average stress 
field appears to be lower than the 750 MPa uniaxial tension value (150 GPA modulus times 0.5% 
strain). Figure 4-3 presents the stress field for the higher value 81.0 10nK = ×  with the same ele-
ment type. A larger variation of stresses is evident, with some concentrations at boundaries and 
triple points. By comparison, the lower stiffness seems to reduce the stress concentrations by re-
laxing the enforcement of displacement continuity on the boundaries. The largest stresses appear 
within the smallest grains with closely spaced grain boundaries. Figure 4-4 presents similar re-
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sults for the Discontinuous Galerkin method with quadratic elements for the stress field, suggest-
ing that the behavior of this formulation is similar to the interface penalty method for the case of 

81.0 10nK = × . Linear polynomial elements display similar features of the stress field in Figure 4-5. 
Since there are 8 times more elements, more faces appear in the fringe plot, and the transition of 
color values is spatially smoother across the model. Figure 4-6 indicates that the hexahedral finite 
elements produce similar results to the tetrahedral elements. Finally, the legend in Figure 4-7 has 
been reset to the extreme values computed for the linear tetrahedral mesh with 81.0 10nK = × ; the 
stress concentrations are more easily seen to occur at triple points. In general, the continuum 
stress field is well behaved and does not have large oscillations. 

The behavior of the interface traction field have much larger variations. The normal compo-
nent of the traction field is presented in Figure 4-8 for the interface penalty method with stiffness 

61.0 10nK = ×  on the quadratic finite element mesh. The traction values are all within the same 
magnitude as the average applied stress, and in general each planar grain boundary has a fairly 
uniform value of traction. Some faces are tensile while some are compressive. This behavior is 
not exhibited by the higher stiffness case in Figure 4-9 with the same formulation and finite ele-
ment mesh. Now, neighboring elements on the same grain boundary have positive and negative 
traction values, meaning that oscillations are occurring between tension and compression with the 
magnitude of oscillations greater than the applied average stress. This result is obviously non-
physical and would require mesh refinement to determine the true solution features. The situation 
does not improve for the Discontinuous Galerkin method in Figure 4-10 for the measure of the 
interface traction given by the combination of the traction average and the penalty term, called at 
the “total traction field”. The portion of this field from the average continuum traction field, 
shown in Figure 4-11, is somewhat more stable, which agrees with the stress contour fields in 
Figure 4-4. However, the inelastic interface constitutive functions for the Discontinuous Galerkin 
method, such as debonding [64], are a function of the total traction field. Thus, the numerical 
formulation does not strongly affect the computed solution quality for the large value of normal 
stiffness nK . 

The solution fields for B-bar patch elements in Figure 4-12 and linear tetrahedral elements in 
Figure 4-13 also display very large oscillations. The fields appear slightly smoother compared to 
Figure 4-9, with less dark red faces adjacent to dark blue faces. This improved appearance may be 
due to the finer resolution of the plotted contour fields since the fields are displayed for individual 
elements. Lastly, the oscillations are also present for linear hexahedral elements in Figure 4-14. 
Thus, changing the element type also does not improve the quality of the interface traction field, 
meaning that the poor performance cannot be attributed solely to the features of quadratic inter-
face elements. Rather, the solution for this linear elastic model, which can be mathematically 
proven to possess a unique solution, can only be determined through mesh refinement. 

While the behavior of the interface traction is a primary concern for stability of the cavity 
growth model, the elastic separation of the interface must also be controlled so that the micro-
structural model is not artificially compliant. The computed normal displacement gap for the case 
with 61.0 10nK = ×  shown in Figure 4-15 is therefore concerning. The extreme values of the gap, 
shown by the legend, are about 40-50% of the applied displacement field, while the intermediate 
values are about 1% of the applied displacement. Also, the values are nearly uniform on each 
grain boundary. In fact, the color values on each interface element are identical between the trac-
tion field Figure 4-9 and gap field Figure 4-15, which is a consequence of the linear relationship 
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in the penalty constitutive equation. The large interface gaps highlight the important of properly 
calibrating the penalty coefficient, a known issue with cohesive interface element formulations 
[12] [64]. Figure 4-16 examines the displacement gap for the interface penalty method on the 
quadratic element mesh with 81.0 10nK = × . The gap magnitude has decreased by a factor of 10, 
but now oscillations are present across grain boundaries, likely due to the weak enforcement of 
impenetrability which balances the positive and negative errors. Similar trends are exhibited by 
the Discontinuous Galerkin method (Figure 4-17), linear tetrahedral elements (Figure 4-18), and 
linear hexahedral elements (Figure 4-19). 

4.3 Model	response	for	high	tangential	stiffness	

Returning to the discontinuities of the displacement field in the continuum plot shown in Fig-
ure 4-1, these discontinuities seem to be larger than expected for a polycrystalline material that 
has a small number of voids and cracks. Rather, the behavior appears to more closely represent a 
closely-packed granular material with particles in contact along interfaces. Thus, while large 
amounts of grain boundary sliding might occur at much larger temperatures, most likely a larger 
value of interface tangential stiffness and viscosity are needed to more closely represent the mi-
crostructure response at the moderate temperatures being studied herein. Also, the frictionless 
contact of individual spheres considered by Hertzian contact, reviewed for example in [65], is 
known to produce sharp gradients in contact pressures that are only resolved on very fine grids 
and lead to oscillations on coarse grids without special numerical treatments. 

All of these considerations suggested that a larger value of interface tangential stiffness 
should be employed. Figure 4-20 presents the normal traction field for linear tetrahedral elements 
using the interface penalty method with several different values of tK , all with 81.0 10nK = × . No-
tice that as the tangential stiffness is increased from part (a) to part (c), the oscillations in the 
normal direction on boundaries decrease. The results for Figure 4-20 (a) with 61.0 10tK = ×  have 
similar degrees of oscillation to the results in Figure 4-20 (d) with 1.0tK = , which is a duplication 
of Figure 4-13 with a different legend. The smoothness of the boundary fields is acceptable for 
both Figure 4-20 (b) and (c) with the larger stiffness. The fringe plots of displacement gap in Fig-
ure 4-21 exhibit similar trends; studies for quadratic meshes also show similar trends. As men-
tioned above, the oscillations that appear for the lower values of stiffness may be due to sharp 
contact pressure developing similar to those for Hertzian contact. The finite element mesh with 
only 20 interface elements per grain boundary is not sufficiently refined to capture the concen-
trated pressure from pinching at triple points. 

4.4 Interface	penalty	stiffness	conclusions		

The improvement to the interface normal tractions obtained in Section 5.3 by increasing the 
value of tK  suggest that a reasonable range for the tangential stiffness to avoid artificial oscilla-
tions in the normal traction on coarse meshes is a value that is within a factor of 10 to 100 of the 
normal direction stiffness. This range of values is appropriate for each of the studied numerical 
formulations and element types. To translate this recommendation back to the nonlinear constitu-
tive models for cavity growth described in Section 2, relevant estimates of physically realistic 
values for grain boundary sliding viscosity are needed. From a review of literature conducted in 
[12] [66] and references therein, reasonable values for the grain boundary diffusivity of Grade 91 
at the temperature of 600 C are on the order of 1610−  to 1410−  1 1 3MPa hr mm− −⋅ ⋅ . Assuming an in-
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verse relation of the viscosity to diffusivity, moduli additional physical constants, corresponding 
values of viscosity lie between 510  to 710  1MPa hr mm−⋅ ⋅ . Therefore, an intermediate value of 

610bη =  is adopted for the numerical studies in Section 6, in light of the effect of grain boundary 
sliding on primary creep determined in Section 6.3. Thus, a related estimate for the normal stiff-
ness 81.0 10user

linK = ×  is considered for these simulations as well, and was found to provide stable 
computed field for the interface normal traction. 

4.5 Chapter	figures	
 

 

Figure 4-1. Displacement field xu  for interface penalty method with 81 10nK = ×  and 01 10tK = × , 
quadratic tetrahedral elements 
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Figure 4-2. Stress field xxσ  for interface penalty method with 61 10nK = ×  and 01 10tK = × , quadratic 
tetrahedral elements. 

 

 

Figure 4-3. Stress field xxσ  for interface penalty method with 81 10nK = ×  and 01 10tK = × , quadratic 
tetrahedral elements. 
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Figure 4-4. Stress field xxσ  for Discontinuous Galerkin method with 81 10nK = ×  and 01 10tK = × , 
quadratic tetrahedral elements. 

 

 

Figure 4-5. Stress field xxσ  for interface penalty method with 81 10nK = ×  and 01 10tK = × , linear tet-
rahedral elements.  
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Figure 4-6. Stress field xxσ  for interface penalty method with 81 10nK = ×  and 01 10tK = × , linear 
hexahedral elements. 

 

 

Figure 4-7. Stress field xxσ  for interface penalty method with 81 10nK = ×  and 01 10tK = × , linear tet-
rahedral elements. Maximum and minimum of legend correspond to 81 10nK = ×  results.  
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Figure 4-8. Normal traction component field 
   Tn = Kn u ⋅n!"# $%&  for interface penalty method with 

61 10nK = ×  and 01 10tK = × , quadratic tetrahedral elements.  

 

 

Figure 4-9. Normal traction component field 
   Tn = Kn u ⋅n!"# $%&  for interface penalty method with 

81 10nK = ×  and 01 10tK = × , quadratic tetrahedral elements.  
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Figure 4-10. Normal total traction field 

   Tn = n ⋅σ ⋅n{ }+ Kn u ⋅n!"# $%&  for Discontinuous Galerkin meth-
od with 81 10nK = ×  and 01 10tK = × , quadratic tetrahedral elements.  

 

 

Figure 4-11. Normal flux traction field { }nT = ⋅ ⋅n σ n  for Discontinuous Galerkin method with 
81 10nK = ×  and 01 10tK = × , quadratic tetrahedral elements. 
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Figure 4-12. Normal traction component field 

   Tn = Kn u ⋅n!"# $%&  for interface penalty method with 
81 10nK = ×  and 01 10tK = × , B-bar patch elements. 

 

 

Figure 4-13. Normal traction component field 
   Tn = Kn u ⋅n!"# $%&  for interface penalty method with 

81 10nK = ×  and 01 10tK = × , linear tetrahedral elements.  
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Figure 4-14. Normal traction component field 

   Tn = Kn u ⋅n!"# $%&  for interface penalty method with 
81 10nK = ×  and 01 10tK = × , linear hexahedral elements.  

 

 
Figure 4-15. Normal displacement gap field 

  u ⋅n!"# $%&  for interface penalty method with 61 10nK = ×  
and 01 10tK = × , quadratic tetrahedral elements.  
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Figure 4-16. Normal displacement gap field 
  u ⋅n!"# $%&  for interface penalty method with 81 10nK = ×  

and 01 10tK = × , quadratic tetrahedral elements.  

 

 

Figure 4-17. Normal displacement gap field 
  u ⋅n!"# $%&  for Discontinuous Galerkin method with 

81 10nK = ×  and 01 10tK = × , quadratic tetrahedral elements.  
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Figure 4-18. Normal displacement gap field 
  u ⋅n!"# $%&  for Discontinuous Galerkin method with 

81 10nK = ×  and 01 10tK = × , linear hexahedral elements.  

 

 

Figure 4-19. Normal displacement gap field 
  u ⋅n!"# $%&  for Discontinuous Galerkin method with 

81 10nK = ×  and 01 10tK = × , quadratic tetrahedral elements. 
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Figure 4-20. Normal traction component field 

   Tn = Kn u ⋅n!"# $%&  for interface penalty method with 
81 10nK = × , linear tetrahedral elements: (a) 61 10tK = × ; (b) 71 10tK = × ; (c) 81 10tK = × ; (d) 
01 10tK = × . 
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Figure 4-21. Normal displacement gap field 

  u ⋅n!"# $%&  for interface penalty method with 81 10nK = × , 
linear tetrahedral elements: (a) 61 10tK = × ; (b) 71 10tK = × ; (c) 81 10tK = × ; (d) 01 10tK = × . 
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5 True	Periodic	Boundary	Conditions	

5.1 Background	

The goal of the simulations described in this report is to represent a statistically representative 
volume element (RVE) and use the response of the RVE to represent the response of the material 
on the macroscale.  When deciding on an appropriate RVE the first task is to ensure that it is sta-
tistically representative of the overall material structure and sufficiently large to capture the full 
distribution of microstructural features and deformation modes important in the actual material 
[67] [68] [69].  Previous reports have established that the cell used here is adequately representa-
tive in this sense. 

Once the structure and size of the RVE is established, for example the grain size and shape 
distribution, the material texture, the distribution of grain and GB material properties, and the 
number of grains modeled in the cell, it must be discretized and boundary conditions established 
to impose macroscale loading conditions.  This work uses the open source software Neper [70] to 
create the discretization.  At least two possibilities exist for the RVE shape and applied boundary 
conditions: a “block” model of the type shown in Figure 5-1a and a true-periodic model shown in 
Figure 5-1b.  Both RVEs instantiate the same material properties, i.e. the same texture, grain size 
distribution, etc.  The block RVE truncates the statistically-representative structure into a cube, 
whereas the true periodic structure contains only whole ågrains.   Both structures tile space.  For 
the block RVE this is trivial – a tessellation of cubes fills space with gaps or overlaps.  For the 
periodic structure this requires special consideration to ensure that the structure tiles correctly.  
Figure 5-2 shows that Neper generates periodic RVEs that fill space.  Neper does this by creating 
a periodic Voronoi tessellation [21].  

For both RVEs the mesh is periodic – the  nodes and element faces match in the tiled struc-
ture.  This allows imposing the correct boundary conditions (BCs) using multi point constraints 
(MPCs) in the finite element solver.  Additionally, the true-periodic RVE requires cohesive ele-
ments inserted not only on the interior grain boundaries fully inside the cell but also on the out-
side faces of the grains to allow sliding and opening on the periodic interfaces.  Inserting these 
cohesive elements requires a sophisticated algorithm, described in Chapter 5. 

The objective of a set of BCs for a RVE is to ensure that 1) the structure remains periodic un-
der subsequent deformation and 2) to allow the user to impose the macroscale loading conditions 
of interest.  The details of the block RVE boundary conditions have been described in previous 
reports.  Essentially, MPCs are used to ensure that opposite faces of the cube remain plane and 
parallel.  Then either a force or a displacement is applied to one or more faces of the model.  The-
se forces or displacements impose uniform stresses or strains in the directions of the cube faces.  
It is much more difficult to impose more complicated loading conditions on the block RVEs. 
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The boundary conditions for the periodic RVE are more complicated and described in detail 
below.  These boundary conditions can directly impose arbitrary macroscopic deformation gradi-
ent and/or stress tensor components on the periodic cell.  Therefore, the periodic model can easily 
represent arbitrary macroscale boundary conditions. 

Each type of RVE has advantages and disadvantages.  For the block RVE: 

• the model is relatively simple to create, not requiring periodicity when creating the model 
geometry; 

• loading conditions in the direction of the cube faces are easy to impose and the required 
MPCs are easy to generate; 

but: 

• loading conditions not in the directions of the cube faces/edges are difficult to impose; 

• this structure cuts grains arbitrarily and effectively creates artificial grain boundaries 
across the periodic faces on these cuts. 

Whereas for the periodic RVE: 

• arbitrary macroscale loading conditions are easily imposed; 

• the model is a direct instantiation of a representative microstructure, without any artificial 
cuts; 

but: 

• the model geometry can be difficult to create; 

• meshing the periodic geometry can be difficult, possibly resulting in a poor quality mesh 

• the MPCs imposing periodic deformation are more difficult to set up. 
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The key question for the material deformation modeled here – creep deformation to rupture, 
with creep damage represented with cohesive elements on the grain boundaries – is whether the 
artificial boundaries created by cutting the structure into a cube affect the quality of the results.  
The artificial boundaries formed in this process are not representative of the actual material GB 
distribution and may cause artificial stress concentrations.  More importantly, the interior grain 
boundaries terminating on the cube surface are artificially locked against sliding – they are forced 
to slide into a solid grain on the other side of the periodic interface.  Both of these effects could 
potentially degrade the accuracy of a block-type model, potentially requiring a larger RVE size to 
minimize the influence of the artificial surfaces by increasing the volume to surface area ratio.  
This chapter answers this question by implementing true periodic boundary conditions in 
WARP3D and comparing block RVEs to corresponding true periodic structures. 

5.2 Implementation	

5.2.1 Solid	and	interface	finite	elements	

Simulation of grain and grain boundary deformation with the models described in Chapters 2 
and 3 requires grains defined by solid elements and boundaries defined by 3D interface elements. 
Neper generates the solid mesh directly, including appropriate periodicity. A MATLAB program 
[71] inserts the interface elements along grain and packet boundaries. 

Neper can generate 3D meshes with both first order and second order tetrahedral elements.  
The two available tetrahedral elements in WARP3D are tet4 and tet10.  The tet10 element pro-
vides a quadratic displacement field and better represents bending deformations without severe 
shear locking. Under fully incompressible plastic deformations tet10 exhibits minimal volumetric 
locking, even when the element edges are curved.  Therefore, this report uses tet10 elements to 
represent the grain bulk. 

WARP3D has 12-node triangular-shaped (trint12) interface elements that provide displace-
ment compatibility with faces of the tet10 solid elements. The trint12 elements may be non-planar 
and may have curved edges in both the initial and deformed configurations. These initially zero-
thickness elements have top and bottom surfaces coupled with a cohesive constitutive model that 
links three displacement jumps across the surfaces to three work-conjugate tractions. The inter-
face elements are programmatically separate from the traction-displacement cohesive material 
models; new cohesive models can be incorporated without reimplementing the element routines. 

5.2.2 Interface	element	insertion	

Neper currently cannot generate interface elements for quadratic solid elements. Therefore, 
this report uses Neper only to generate the solid mesh and the element sets describing each grain. 
A separate preprocessor inserts interface elements between the solid elements on grain bounda-
ries. The interface-insertion preprocessor wraps an algorithm and MATLAB code developed by 
Truster [71]. The self-contained algorithm requires only nodal coordinates, element connectivity, 
and element sets for each grain.  The interface insertion algorithm duplicates nodes and creates 
zero-thickness interface elements that conform to the topology and order (linear or quadratic) of 
the attached solid element faces. 

A Python script reads the Neper output and translates it to the format required by the 
MATLAB interface-insertion script.  Briefly, to insert cohesive elements in a non-periodic do-
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main the script: (1) finds and catalogs all facets shared by elements in the mesh; (2) duplicates the 
nodes along facets that coincide with grain boundaries; (3) updates the connectivity of adjacent 
solid elements; and (4) generates the connectivity of the interface elements. 

Generating cohesive elements for periodic domains required modification of the existing non-
periodic interface insertion algorithm. In addition to the information required for non-periodic 
domains the periodic domain insertion script requires a list of node pairs on opposite sides of the 
domain corresponding to the multi-point conditions, as described in Section 5.2.3. Using these 
pairs, the modified script first collapses the connectivity of the so that only one node remains 
from each pair or group of node pairs. This directly connects periodic boundaries, turning the 
RVE mesh into a toroid. The existing routines can then insert cohesive elements on the grain 
boundaries, now including the toroidal periodic boundaries. Finally, the modified method splits 
the toroidal mesh by duplicating nodes and generates the appropriate MPCs to enforce periodic 
boundary conditions.  The script ensures that all interface elements of a particular grain boundary 
are inserted on the same side of the domain 

5.2.3 Periodic	boundary	conditions	theory	

Consider a 3D, periodic structure with lattice vectors   a i  for    i =1,2,3 .  Let the displacement 
field in the periodic structure be  u , the deformation gradient be  F , and the 1st Piola-Kirchhoff 
stress tensor be  P .  Consider two points   p1  and    p2  such that  

 
    
p1 = p2 + nia i

i=1

3

∑ = p2 + a12   (5.1) 

for some integers  ni .  Let the corresponding displacements of these two points be   u1  and    u2 .  In 
the undeformed state these two points are equivalent under the lattice symmetry.  To maintain the 
lattice symmetry they must remain equivalent under subsequent deformation.  Therefore, 

    p1 + u1 = p2 + u2 + a ′12   (5.2) 

where    a
′
12  is the lattice vector in the deformed configuration, given by  

    a
′
12 = F ⋅a12  . (5.3) 

Combining Equations (5.2) and (5.3) yields  

 
   
u1 = u2 + a12

′ −a12 = u2 + F−I( )⋅a12   (5.4) 

or 

 
   
u1−u2 = F−I( )⋅a12  . (5.5) 

Equation (5.5) is an inhomogeneous constraint equation.  With a periodic mesh these constraints 
can be imposed as MPCs tying equivalent nodes in the periodic RVE, i.e. nodes with images 
translated across the structure by some integer combination of lattice vectors.  One such con-
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straint is required for each node pair and each node may belong to multiple pairs.  Each vector 
constraint equation represents three scalar constraints. 

Danielsson, Parks, and Boyce [72] suggest implementing these equations by using dummy 
degrees of freedom (DoF) describing the nine components of the deformation gradient.  For ex-
ample, three free-floating nodes might be used with each of their nine deformation degrees of 
freedom representing one component of the deformation gradient.  This transforms the system 
into a series of MPCs involving three deformation degrees of freedom – two from the periodic 
nodes and one from the dummy degree of freedom – and constraints on each of the dummy de-
grees of freedom.  DPB show through virtual work that the nodal forces corresponding to the 
dummy degrees of freedom correspond to the volume of the unit cell times the macroscopic first 
Piola-Kirchhoff stress tensor, i.e. the nine components of the tensor   VP .  Applying the periodic 
MPCs results in 9 unconstrained degrees of freedom: the dummy DoF.  Adding a displacement 
constraint to one of these dummy DoF imposes a component of the macroscale deformation gra-
dient on the RVE.  Applying a force imposes a component of the macroscale stress tensor.  This 
configuration allows the user to easily impose arbitrary macroscale boundary conditions. 

Given a periodic mesh of a periodic geometry and a list of lattice-equivalent boundary node 
pairs and their corresponding lattice vectors conceptually the procedure for imposing the periodic 
boundary conditions is straightforward: for each periodic node impose the three scalar constraint 
equations given by Equation (5.5).  The required information – the periodic mesh and list of 
equivalent node pairs – is an output of Neper and the pre-processing script described in this report 
for inserting periodic cohesive elements on the outside faces of a periodic model. 

One complication is this procedure does not remove rigid body modes.  The three translation-
al modes can be removed by constraining all displacements of an arbitrary node in the interior of 
the mesh.  The three rotations can be removed by finding three additional interior nodes and con-
straining one displacement degree of freedom on each, one x-displacement, one y-displacement, 
and one z-displacement.  Alternatively, the rigid modes can be eliminated by removing 9 scalar 
MPCs and replacing them with displacement constraints. 

5.2.4 Implementing	periodic	boundary	conditions	in	WARP3D	

Unfortunately, this strategy cannot be used directly to apply periodic boundary conditions in 
WARP3D.  The MPCs described above are inhomogeneous.  Actually, the MPCs directly setup 
by the DPB method are homogeneous but one DoF in each set is constrained, therefore leading to 
an inhomogenous MPC of the type described by Equation (5.5) after substitution.  WARP3D does 
not have the ability to impose inhomogeneous multipoint constraints. There are at least three 
ways to implement MPCs in finite element solvers: 1) Lagrange multipliers augmenting the non-
linear equilibrium equations 2) directly condensing out the constrained equations, 3) augmenting 
the equilibrium equations with penalty equations approximately enforcing the constraints.  
WARP3D uses the second method which has the advantage of removing DoF from the overall 
system, instead of adding additional DoF, increasing the size of the system of equations.  This 
method requires logic to rearrange the internal force side of the equilibrium equations to remove 
the appropriate equations.  Inhomogeneous constraints would require similar logic to rearrange 
the external force equations, but this logic was never implemented in WARP3D. 

An alternative to implementing inhomogeneous boundary conditions in the code is to enforce 
the periodic constraints as a series of homogeneous MPCs and then drive the dummy DoF in the 
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MPCs using a penalty term.  While somewhat contrived this method has implementational ad-
vantages in WARP3D.  The method is identical to that of DPB except instead of constraining the 
dummy DoF directly instead the dummy DoF constraints are imposed through a penalty term.  In 
detail, WARP3D creates two sets of three dummy nodes for a total of 18 extra DoF.  The proce-
dure described above generates MPCs tying the equivalent node pairs to the first set of nine 
dummy DoFs.  Then the first nine dummy DoFs are tied to the second nine dummy DoFs through 
nine penalty constraints.  The loading conditions – deformation gradient or stress tensor compo-
nents – are imposed through the second set of dummy DoFs.  With an adequately high penalty 
stiffness this method procedures identical results that of DPB. 

This strategy required implementing penalty constraints in WARP3D.  This was done by add-
ing a new element type taking as input two nodes in the connectivity table.  The three DoF of 
each node are then tied together by three penalty stiffnesses.  This is nearly a linear spring ele-
ment except the stiffness matrix is always diagonal so it does not account for the orientation of 
the spring.  Instead it directly ties the corresponding nodal DoF together: x-displacement to x-
displacement, y-displacement to y-displacement, and z-displacement to z-displacement. 

After implementing the penalty elements a complete periodic test simulation was setup for an 
arbitrary periodic RVE generated in Neper. Each grain was given different linear elastic proper-
ties and no cohesive elements were used on the boundaries – they were treated as rigid.  Then the 
complete system was testing by imposing different combinations of stress tensor components and 
displacement gradient components, running the linear simulation, and post-processing the results 
in Paraview [73] to ensure the simulations produce the correct average stresses and strains.  Addi-
tionally, the penalty stiffness was adjusted to give good accuracy – the stress and displacement 
gradient components in the results match those imposed – without affecting the numerical per-
formance of the model.  For units of MPa and mm a penalty stiffness of 106 MPa/mm was found 
to be optimal. 

5.3 Comparison	between	periodic	and	block	RVEs	

Two models were used to evaluate the differences between periodic and block RVEs.  The 
first is a simplified model that compares two RVEs with identical grain geometries.  The second 
is an instantiation of the full model described in this report.  Both models use quadratic tetrahe-
dral elements with a 4-point  B   integration scheme designed to prevent numerical issues caused 
by incompressible plastic deformation.  The block geometries have cohesive elements inserted on 
the interior grain boundary faces and use the periodic boundary conditions described in previous 
reports.  The periodic models have cohesive elements both on the interior and exterior grain faces, 
inserted using the algorithm described in Section 5.2.2, and periodic boundary conditions of the 
type described in this chapter.  All comparisons are for creep loading: a dead-load stress (i.e. a 
component of the first Piola-Kirchhoff stress tensor) prescribed in one axial direction and zero 
stresses in all other directions. 

5.3.1 	Simplified	model	

Figure 5-3 shows the simplified model used to examine differences between the two RVE 
types.  This model contains 100 grains and the block and periodic geometries are identical – they 
both have the same grain structure.  However, the meshes produced for the two geometries are 
different.  Table 5-1 describes the block and periodic mesh parameters.  
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  Neper provides a geometry regularization option.  This option removes small grains and 
small grain faces and generally produces a geometry from which a tetrahedral mesher can gener-
ate a high-quality finite element mesh.  However, this option cannot be used with periodic geome-
tries and without it the resulting meshes tend to be poor quality.  For the full model – crystal plas-
ticity and the cohesive-interface GB elements representing creep damage – this severely limits the 
amount of deformation that the model can develop before it breaks down numerically, generally 
by a convergence failure in the crystal plasticity routines.  Usually, unregularized geometries fail 
before the onset of tertiary creep. 

To avoid this issue while still retaining identical geometries for the block and periodic RVEs 
this comparison simplified the constitutive description of the grains and GBs.  For the grains the 
models use crystal plasticity with random grain orientations but arbitrary Voce hardening parame-
ters designed to ensure the grain bulk response continues to harden out to large strains.  This 
avoids numerical instability in the grain bulk.  For the GBs the simplified comparison models use 
linear viscous GB sliding but linear elastic GB opening, essentially turning off creep damage. 

Figure 5-4 compares the creep strain accumulated over time in the block and periodic models.  
The figure shows the total creep strain as well as the strain accumulated in the loading direction 
due to GB sliding and bulk grain deformation.  Because these are the only two mechanisms pre-
sent in this simulation, the total of the two decomposed strains equals the total creep strain.  The 
figure shows that there are some small differences between the results of the two models but no 
significant differences between the two approaches. 

Figure 5-5 and Figure 5-6 clearly show the statistical similarity of the two models.  Figure 5-5 
is a histogram of the von Mises stress in each solid element in the two models at the last load step.  
Figure 5-6 is a similar histogram showing the grain boundary sliding rates in each cohesive ele-
ment, also during the last load step.   The grain bulk stress distributions are nearly identical.  The 
GB sliding rates show larger differences but are still representative of the same statistical distribu-
tion.  This figure strongly suggests that there is little difference between the simulation results for 
the two RVE approaches.  In particular, Figure 5-6 suggests that the cut RVE faces and the corre-
sponding terminated interior grain boundaries in the block RVE do not significantly affect grain 
boundary sliding.  The block model artificially terminates the boundaries at the edge of the cubic 
cell.  In the true periodic model these grain boundaries terminate into other realistic grain bounda-
ries, forming triple points in 2D sections.  Likely both termination conditions provide a similar 
level of constraint: both are very difficult to slide past. 

5.3.2 Full	model	

The previous results are for a simplified description of the material response, designed to al-
low for the accumulation of significant creep strain before the simulation fails.  The lack of a pe-
riodic regularization option in Neper necessitated this approach.  This subsection compares simu-
lation results from unregularized block and periodic RVEs.  Here, the grain geometry parameters 
were tuned to produce an approximately regularized grain structure without explicit regularization 
to improve the grain geometry.  However, this means that the block and periodic RVEs are not of 
identical grain structures.  Instead, they are statistically equivalent – drawn from the same grain 
size, shape, and orientation distributions – and both use the same material properties and models – 
the full model described in previous chapters, including linear viscous grain bulk behavior de-
signed to mimic diffusional mechanisms and the full grain boundary damage model. 
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Figure 5-1 shows the two RVEs used for the comparison.  Both consist of approximately 
equal volume, highly spherical grains designed to be easy to mesh.  The grain sizes and shapes 
are statistically identical, but the block (a) and periodic (b) models are different instantiations of 
the underlying statistical distributions.  The material properties are those described in this report 
for the full final model of creep deformation in Grade  91. 

Other results for block RVEs described in this report use the mesh regularization option to en-
sure Neper produces a high quality finite element mesh.  Even though the grain properties used to 
generate the RVEs used here are designed to produce high quality meshes, the meshes are still not 
as regular as those produced with the regularization option.  This means that several of the simu-
lations do not enter the tertiary creep regime.  However, this section compares the primary creep 
portion of the simulation response to see if there are any significant differences between the two 
simulation approaches.  Table 5-2 describes the properties of the block and periodic meshes. 

Figure 5-7 shows the creep rate versus time for 16 simulations: eight different load levels (60, 
80, 100, 120, 140, 160, 180, and 200 MPa) and 2 different model types (block and periodic).  For 
the higher load levels there is very little difference between the two model types – the creep 
curves are essentially identical.  Differences in this regime are numerical; the periodic models 
tend to fail to converge before the block models.  At the lower stress levels there is a significant 
difference between the block and periodic models in the initial, primary creep portion of the 
curve. 

The remaining figures in this chapter (Figure 5-8 to Figure 5-13) plot the results of the two 
types of simulations, block and periodic, for three different load levels: 60, 140, and 200 MPa.  
These plots break down the average, macroscale strain rate in the model into several deformation 
mechanisms.  At the highest level they plot the total deformation rate.  On a second level they di-
vide that total creep deformation rate into two categories: grain bulk and grain boundary.  Finally, 
on a third level they divide the grain bulk rate into elastic, crystal plasticity, and linear viscous 
contributions and the grain boundary behavior into GB opening and sliding terms.  The total of 
the contributions on each level equals the overall strain rate.  Furthermore, two figures are shown 
for each load level.  The first shows strain rates in the direction of the loading, these would be the 
measured creep strain rates.  The second shows von Mises-type effective strain rates, including 
transverse and shear deformation components. 

In general, the two types of strain rate data – loading and effective – show similar trends.  One 
noticeable difference is in the elastic strain rates.  The macroscale elastic strain rate in the loading 
direction can become compressive, representing macroscale softening.  This causes it to jump off 
the log scale plot.  The effective strain rate data is always positive and shows a smooth curve, 
however it is does not correspond to an easily experimentally measured quantity. 

Figure 5-8 and Figure 5-9 elucidate the differences between the two RVE approaches at low 
stresses.  In this regime the isotropic, diffusional grain deformation term dominates the crystallo-
graphic, crystal plasticity deformation.  Additionally, the overall deformation rate is low, includ-
ing the GB sliding rate.  The two most important mechanisms in the primary creep regime in both 
models are the linear viscous grain bulk term, representing diffusional deformation mechanisms, 
and grain boundary sliding.  Both models eventually reach a state of secondary creep at a constant 
rate where the deformation in both cells is nearly identical – even broken down into components.  
The differences between the two models are in the primary creep regime.  Note that the higher 
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loading stress levels never undergo anything resembling a steady, secondary creep rate, instead 
transitioning directly from primary to tertiary creep. 

The difference between the block and periodic RVEs is in how long it takes to reach second-
ary creep – the periodic structure takes longer to achieve a constant creep rate.  This difference is 
due to GB sliding.  The onset of steady, secondary creep is when GB sliding deformation be-
comes small, essentially because all the easy GB sliding has taken place and the grains are essen-
tially trapped at triple points.  At higher stresses this takes place relatively quickly but it takes 
longer at the lower stress level and longer in the periodic model, compared to the block model.  
Presumably, each grain has a certain distance of “free” GB sliding available to it before it meets a 
substantial obstacle like a triple point.  At high stresses this free sliding occurs quickly because 
the stresses driving the viscous sliding are large.  Therefore, any statistical differences in the free 
sliding path lengths between the periodic and block models are overwhelmed by the short time 
required for the grains cover these distances. 

At the lowest stress level this process of exhausting free sliding takes longer due to the low 
driving force.  This means any differences in the free sliding path lengths between the two models 
are accentuated.  The periodic model has a longer period of free sliding, which might indicate that 
the “cut” surfaces in the block RVE do impeded GB sliding, as suggested.  Note the results in the 
previous subsection on the simplified model were for a high loading stress.  This implies that the 
periodic RVE might have a significant advantage over the block RVE for low stress, diffusion-
driven creep deformation.  However, this period of primary creep is exhausted relatively quickly 
even at low stress and the steady-state secondary creep rates and time-to-tertiary creep are essen-
tially the same for the block and periodic models.  So the difference may be significant only for 
very low loads or when it is important to accurately model primary creep. 

Figure 5-10 and Figure 5-11for 140 MPa and Figure 5-12 and Figure 5-13 for 200 MPa show 
similar behavior.  Elastic grain bulk deformation dominates the loading portion of the simulation.  
Next comes a period of primary creep dominated by grain bulk plasticity and grain boundary slid-
ing.  When the model exhausts free GB sliding the GB opening rate increases, indicating the on-
set of damage and tertiary creep.  The block and periodic models have very similar responses with 
no significant differences between the two modeling strategies. 

Table 5-3 shows the time to the onset of tertiary creep for the block models for all the loading 
stresses considered here.  For this table the time to tertiary creep is defined as the time when the 
total deformation rate in the loading direction increases to reach a value 20% greater than the 
minimum, total loading direction strain rate.  All the block models except one achieve this condi-
tion, which might be considered a reasonable surrogate for total creep life.  With the exception of 
the two lowest load levels none of the periodic models extend to tertiary creep, all failing prior to 
the start of tertiary creep because of convergence problems in the crystal plasticity model.  Table 
5-3 defines a time to grain boundary opening as the time at which the grain boundary opening 
rate, in the direction of loading, increases to above 10% of the minimum grain boundary opening 
strain rate, in the direction of loading.  The table shows that this time roughly correlates with the 
time to tertiary for the block model and so could serve as another surrogate for creep life.  All the 
periodic model simulations, except one, extend past this time which means it could be a useful 
measure of creep life for the periodic models.  The time to opening in the periodic models rough-
ly matches the time to opening for the block models, with the exception of the two lowest stress 
levels.  Differences between the two types of models in this regime were described above.  
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5.4 Summary	

Overall, this chapter shows only small differences in the simulation results when comparing 
the periodic and block RVE methodologies.  This is in agreement with past results, including 
those of [74].  However, there are some differences between the two approaches in the primary 
creep regime and at low stresses, both areas where GB sliding is an important deformation mech-
anism.  This chapter attributes these differences to artificial constraint on GB sliding caused by 
the sliced faces of the block RVEs.  However, secondary and tertiary creep occur at roughly the 
same time and the same level of deformation in both the periodic and block models, suggesting 
that any difference is transitory and confined to the primary creep regime. 

A clear advantage of the periodic RVE is the ease of applying different macroscale boundary 
conditions to the model.  This will be used in a subsequent chapter to examine at the effect of tri-
axiality on the model response to explore notch strengthening and weakening effects in Grade 91.  
Furthermore, this chapter establishes the time to GB opening as a reasonable surrogate for the 
time to the onset of tertiary creep.  This surrogate is necessary when using results from periodic 
RVEs as they rarely achieve a significant amount of tertiary creep before failing to converge. 

5.5 Chapter	figures	
 

 
Figure 5-1. The two types of RVEs considered in this section: a) block-sided and b) true periodic. 
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Figure 5-2. The true periodic RVE tiles space.  This figure shows a 2x2x2 tiling of the RVE cells.  

Both the mesh and geometry are periodic. 

 

 
Figure 5-3. Simplified model for directly comparing block and periodic geometries.  Note the grain 

structure in the block (a) and periodic (b) RVEs are identical.  However, due to the require-
ment of mesh periodicity, the tetrahedral meshes are not the same. 
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Figure 5-4. Strain rate comparison between the simplified block and periodic RVEs.  The solid lines 

show results for the block RVE and the dashed lines for the periodic RVE.   The figure com-
pares the total strain rates, the grain bulk strain rates, and the grain boundary sliding strain 
rates. 

 

 
Figure 5-5. Histogram comparing the distribution of the element von Mises stresses generated in the 

simplified block RVE and the simplified periodic RVE. 
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Figure 5-6. Histogram comparing the distribution of the element GB sliding rates generated in the 

simplified block RVE and the simplified periodic RVE. 

 

 
Figure 5-7. Plot showing the effect of the two different RVEs for the full model at various stress lev-

els.  The data series are the total strain rate in the opening direction for each model. 
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Figure 5-8. Plot comparing the loading direction strain rates for the block and periodic RVEs for a 

load of 60 MPa. 
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Figure 5-9. Plot comparing effective strain rates for the block and periodic RVEs for a load of 60 

MPa. 
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Figure 5-10. Plot comparing the loading direction strain rates for the block and periodic RVEs for a 

load of 140 MPa. 
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Figure 5-11. Plot comparing effective strain rates for the block and periodic RVEs for a load of 140 

MPa. 
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Figure 5-12. Plot comparing the loading direction strain rates for the block and periodic RVEs for a 

load of 200 MPa. 
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Figure 5-13. Plot comparing effective strain rates for the block and periodic RVEs for a load of 200 

MPa. 

 
 

Table 5-1. Description of identical-grain block and periodic meshes used to evaluate the effects of 
periodic boundary conditions on the simplified model. 

Model Number of nodes Number of elements Number of cohesive elements 
Block 54829 32964 7984 
Periodic 88282 48578 12116 
 
Table 5-2. Description of the statistically-equivalent block and periodic models used to evaluate the 

effects of periodic boundary conditions on the full simulation framework. 

Model Number of nodes Number of elements Number of cohesive elements 
Block 29452 16869 4452 
Periodic 39086 19797 6053 
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Table 5-3. Time to minimum GB opening rate for several stress levels comparing the periodic and 
block simulations.  The table includes a column for time to the start of tertiary creep, which could 

only be reliably computed for the block models.  A > symbol in the time to tertiary column indicates 
the simulation did not ever achieve the criteria described in the main text for identifying the onset of 
tertiary creep.  However, all these simulations did show an increasing creep strain rate by the final 

successful load step 

Stress level 
(MPa) 

Time to opening, periodic 
(hrs) 

Time to opening, block 
(hrs) 

Time to tertiary, block 
(hrs) 

60 25120 4060 40000 
80 4060 2160 37000 
100 3000 2990 >13300 
120 1700 1750 >3930 
140 594 1370 4430 
160 269 356 >1330 
180 70.4 100 >701 
200 >24.6 62.4 >182 
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6 Complete	Microstructural	Model	for	Creep	Deformation	in	Grade	91	

This report documents the interactions of two major microstructural mechanisms governing 
the response of Grade 91 under creep conditions: growth and coalesce of cavities along grain 
boundaries (modeled by interface elements also including grain boundary sliding) and evolution 
of dislocations and other defects within grains (modeled by the crystal plasticity finite element 
method).  Chapters 2 and 3 have reviewed their independent contributions to the creep response 
of Grade 91 within a microstructural cell model.  This section presents the combination of the two 
physics-based models to capture the primary, secondary, and tertiary phases of Grade 91 creep 
response at 600 C.  Emphasis is placed on the agreement of the model with experimental creep 
curves during all three phases at higher load levels, the prediction of creep life accounting for 
grain diffusional creep at lower load levels, and the resulting trends of grain boundary cavity 
growth that align with experimental observations. 

In Section 6.1, the microstructural cell model and problem setup are briefly reviewed.  A se-
ries of finite element simulations are performed in Section 6.1.1 using the calibrated grain and 
grain boundary model parameters at loads ranging between 100 MPa to 160 MPa.  In Section 
6.1.2, the cell average strain rate is decomposed into contributions from each mechanism at loads 
100 and 140 MPa to determine the dominant mechanisms during primary, secondary, and tertiary 
creep.  Differences in the trade-off of mechanisms occurring at lower loads 60 to 80 MPa are 
studied in Section 6.1.3, followed by comparison of minimum creep strain rates at lower stresses 
with data from Kloc et al. [27] as well as trends for cavity sizes and density reported by Wu and 
Sandstrom [17].  In Section 6.2, parametric studies are performed to determine that the hardening 
slip resistance in the crystal plasticity model is responsible for the long duration of primary creep 
as opposed to the grain boundary sliding mechanism.  Conclusions about the modeling frame-
work are drawn in Section 6.3. 

6.1 Cell	model	creep	response	across	a	range	of	stresses	

The primary benchmark case for evaluating the performance of the crystal plasticity model for 
creep response is the 100 grain cell model discussed in Chapters 2 and 3. The 3D cell model is a 
( )20.2 mm  cube-shaped domain containing 100 grains that is meshed with 10,402 quadratic tet-
rahedral finite elements, and 467 internal grain boundaries made from 3,921 interface elements.  
The crystal orientations in the 100 grains are sampled from a uniform texture.  The boundary 
conditions on the cell consist of symmetry conditions on the faces 0x = , 0,y =  and 0z = .  The 
effectively incomplete periodic boundary conditions obtained through multi-point constraints 
(MPC) are applied on the other 3 faces of the cube.  For the simulations herein, a uniform pres-
sure is applied on the 0.2z =  mm face to represent the tensile creep loading.  The stress is in-
creased linearly during 10 steps at 0.01 hours per step to reach maximum load at 0.1 hours.  This 
stress increase period is subsequently referred to as the “load ramp period”.  The values of stress 
are set to 100, 110, 120, 140, and 160 MPa to correspond to the load levels investigated experi-



FY17	Status	Report	on	the	Micromechanical	Finite	Element	Modeling	of	Creep	Fracture	of	Grade	91	Steel	
September	2017	
 

ANL-ART-95	 146	 	

mentally by Kimura et al. [23].  The temperature is set to 600oC.  The series of time steps follow-
ing the load ramp period vary based on the approximate creep lifetime of the specimen and are 
listed in Table 3-10. 

6.1.1 Calibration	of	material	parameters	against	higher	stress	data	

The multi-mechanism crystal plasticity model was calibrated in Section 3.4.1 to capture the 
primary creep response evident in the experimentally measured creep curves of Kimura et al. 
[23].  The material parameters for the crystal plasticity model are listed in Table 6-1, and the sim-
ulated creep curves for applied stress 100 to 160 MPa are provided in Figure 3-9.  The strain rate 
for each load level overlays very closely onto the experimental data during the primary creep re-
gime.  The grain boundary parameters for growth and coalescence of cavities were then adjusted 
along the lines of Section 2.3.1.7 and Section 5.4 to produce a close fit for the tertiary regime, and 
Table 6-2 contains these parameters.  In particular, the grain boundary viscosity bη  and penalty 
stiffness user

linK  have been chosen for moderate degree of sliding and stable interface normal trac-
tion fields.  The initial cavity size, number density, and growth parameters are within ranges of 
physical characterizations of Grade 91 from the literature summarized in Chapter 2. 

Table 6-1. Material parameters for multi-mechanism (CP) model 

Property Value Units 
E  150,000  MPa 
ν  0.285  dimensionless 
yτ  40.0 MPa 

vτ  12.0 dimensionless 
n   12 dimensionless 
0θ   800.0 MPa 
m   1 dimensionless 
Dη   91.2 10−×  1 1MPa s− −⋅  
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Table 6-2. Material parameters for traction-separation rate equations and units 

Property Value Units 
bη  61.0 10×  1MPa hr mm−⋅ ⋅  
user
linK  81.0 10×  MPa/mm 

0a  55.0 10−×  mm 

0b  0.06 mm 
D  151.0 10−×  1 1 3MPa hr mm− −⋅ ⋅  
ψ  ( )15 36 75π = °  radians 

0Σ   200 MPa 

N IF N   42.0 10×  dimensionless 

max IN N   31.0 10×  dimensionless 
β   2 dimensionless 

Figure 6-1 examines the evolution of creep strain rate of the cell model as a function of time 
for various load levels.  For the load level 140 MPa, the simulated strain rate history appears al-
most identical to the experimental curve from Kimura et al. [23] during the entire test duration.  
At the lower load levels, the minimum strain rate is over-predicted by a factor of two or less, and 
the experimental curve for 160 MPa has a faster acceleration than the simulated curve.  The time 
elapsed to minimum creep rate is more closely captured by the model.  The stress dependence of 
the cavity nucleation rate, controlled by the parameters β  and 0Σ , help to improve the closeness 
of the fit, as discussed in Chapter 2. 

Figure 6-2 presents the history of accumulated strain of the cell model for each load level.  
Note that the measurements of “strain” for the test specimens are typically measures of the 
change in length of a gauge section.  Thus, the very low strain values during the first hour of test 
can include other effects such as slip in the grips and local stress redistribution within the speci-
men that are not accounted for in the cell model.  After these trends settle out in 1 to 10 hours, the 
simulated strain evolution agrees very well with the experimental evolution.  The maximum strain 
level before divergence of the numerical simulations are about 1-2 % strain, while the tests typi-
cally reach 20% strain accommodated by necking.  Detailed investigations of the cell model solu-
tion fields in Section 2.2.1.4 and Section 6.2 reveal that significant cavity growth has taken place 
by the time 1% overall strain is reached, so that the model is capturing the onset and early stages 
of damage during tertiary creep.  Overall, the microstructural model with combined grain and 
grain boundary deformation mechanisms fits the experimental creep curves quite well considering 
the typical level of scatter in such experiments. 

6.1.2 Decomposition	of	strain	rate	into	deformation	mechanisms	

The overall deformation of the microstructural cell model recorded in Figure 6-1 is a combi-
nation of several active mechanisms in the grains and grain boundaries, and each of these features 
are represented by many finite elements that are each in a separate kinematic and kinetic state.  
To more deeply probe the contributions to the total observed strain rate, domain-average values of 
strain rate are computed for the solid finite elements and interface finite elements, separated by 
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mechanism.  All of the strain-like quantities are evaluated as tensors, and the axial component of 
strain rate   !ε xx  is reported in the figures that follow. 

The dislocation creep rate pd  from (3.57) and the diffusional creep rate dd  from (3.58) are 
provided directly by WARP3D for each solid element in the model as a state output at each time 
step.  These values are integrated over the domain to compute the volume average. The total 
strain rate for grains is computed from the finite difference of the elemental strain field, and the 
elastic strain rate is found by subtracting the dislocation and diffusion tensors from the total rate 
tensor. 

Details for the derivation of interfacial strain rates due to grain boundary opening are given in 
the literature in [12].  The resulting expression for strain, valid at small deformations, is: 
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where the summation is over all grain boundary elements (g.b.e.), and V is the total volume of the 
cell.  For each interface element, this tensor is decomposed into a component aligned with the 
unit normal vector of the element (representing opening) and a component lying in the plane of 
the element (representing sliding).  These decomposed tensors, which have a spatial orientation, 
are then integrated over the domain and the uniaxial component is recorded.  While these formu-
las are approximations, they provide adequate and useful insight into the dominant deformation 
mechanism at different times during the cell model creep response.  

The decomposition of the cell average strain rate was investigated for specific load levels: 
140, 100, 80, and 60 MPa.  Figure 6-3 examines the decomposition at the 140 MPa load level, 
where the “Total” curve matches with the respective curve in Figure 6-1.  Several distinct phases 
are evident at the higher applied load levels.  During the load ramp period and shortly after, the 
elastic strain rate in the grains and the sliding along grain boundaries dominates the total cell de-
formation, up to about 1 hour.  Then, the strain rate from sliding continues to decrease by several 
orders of magnitude over a long period of time, with the transition at 2 hours of grain dislocation 
creep labeled as “Gra. – plast” becoming the largest component of the total strain rate.  Grain 
boundary sliding continues along a curve that is parallel to the grain strain rate, with a strain rate 
about one third of that in the grains.  During this period, the strain rate due to grain boundary 
opening labeled “GBs – opening” continually decreases and is several magnitudes below the oth-
er components, indicating that only the penalty or elastic part of the grain boundary opening is 
occurring.  At 100 hours, the opening rate begins to increase, most likely corresponding to the 
onset of cavity nucleation and growth at faster rates.  This is the first component to show acceler-
ating strain rate, and it occurs about 700 hours before the observed overall minimum strain rate of 
the cell model.  The second component to accelerate is the grain boundary sliding, signifying that 
boundaries are likely relaxing from the additional opening displacement and allowing more slid-
ing to take place.  Lastly, the grain creep strain rate accelerates after 1000 hours is reached; this 
may be attributed to redistribution of stress between grains due to failed grain boundary facets 
with large cavity populations that no longer transmit much traction across the microstructure.  
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Note that because of the large applied load, the strain rate due to diffusional creep in the grains is 
7 12 10  hr− −× , which is the lowest mechanism contribution to the total cell strain rate.  

Figure 6-4 presents the strain rate decomposition at the superimposed load of 100 MPA.  Sim-
ilar trends appear as for the 140 MPa case; the fraction of total deformation due to grain boundary 
sliding remains as one third of the grain strain rate during the later portion of primary creep.  The 
transition from sliding to dislocation creep as the dominant mechanism occurs near 10 hours. The 
sequence of accelerating strain rates, with opening followed by sliding followed by dislocation 
creep, is again present.  The explanation due to unlocking of boundary deformation followed by 
stress shifting to grains along alternative load paths is a logical explanation of the sequence of 
mechanisms apparent in the strain rates.  Lastly, diffusional creep is a much larger fraction of the 
total rate at the 100 MPa load level, about one tenth of the total at the time of minimum creep 
strain rate. 

6.1.3 Prediction	of	creep	response	at	lower	stresses	

The creep response of Grade 91 at operating stress levels is of interest for design of reactors.  
The duration of tests at these lower stress levels is often prohibitive, and therefore modeling of 
material response is desired.  The material parameters calibrated in Section 6.2.1 and given in Ta-
ble 6-1 and Table 6-2 are thus employed for a series of creep deformation simulations of the cell 
model with applied stress below 100 MPa.  The load levels of 80, 70, 60, 30, 10, and 1 MPa are 
chosen because limited experimental data for minimum strain rate during creep tests exist for 
each of these loads [27] [75] [76] [77] [78].  The sequence of time steps for the 60 to 80 MPa 
simulations are listed in Table 3-10. 

Table 6-3: Time step size for sequence of steps for various load levels; step size in hours, uniform 
during steps between the numbers in first column; last row is total simulation duration in hours 

First series step 80 MPa 70 MPa 60 MPa 
1 0.01 0.01 0.01 
11 0.11 0.11 0.11 
101 0.242 0.242 0.242 
201 0.5324 0.5324 0.5324 
301 1.17128 1.17128 1.17128 
401 2.576816 2.576816 2.576816 
501 5.668995 5.668995 5.668995 
601 12.47179 12.47179 12.47179 
701 27.43794 27.43794 27.43794 
801 60.36346 60.36346 60.36346 
901 132.7996 132.7996 132.7996 

1,001 292.1592 292.1592 292.1592 
2,000 316,496 316,496 316,496 

First, the decomposition of strain rate during the time history of the cell model is studied for the 
80 MPa load level, and the result is given in Figure 6-5.  Several distinguishing features emerge 
compared to the behavior of the 100 MPa case in Figure 6-4.  First, the transition of dominant 
mechanism from sliding to grain creep is later for the 80 MPa case, at 30 hours.  Also, the dislo-
cation creep rate is comparable to the sliding strain rate during much of the primary creep regime; 
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both of the curves have a similar slope of strain rate versus time.  Most importantly, the diffusion-
al creep within the grains exceeds the strain rate for dislocation creep after 2,000 hours, similar to 
the time at which the opening strain rate reaches its minimum value at 1,000 hours.  The larger 
contribution from diffusional creep manifests in the total strain rate of the cell model by extend-
ing the period of secondary creep, the duration of which the strain rate is nearly constant.  Note 
that the diffusional creep curve is constant after 0.1 hours, the ending of the load ramp period.  
This behavior agrees with the fact that the volume average stress on the cell model is constant 
over time because the total load does not change and small deformations are considered.  The lin-
ear relation between diffusional creep strain rate and deviatoric stress implies that if the volume 
average of the deviatoric stress is constant, then the volume average of the diffusional creep rate 
is also constant. 

Figure 6-6 presents the decomposed strain rates for the 60 MPA load case. More differences ap-
pear compared to the 80 MPa response.  The strain rate contribution from dislocation creep is 
now lower than grain boundary sliding throughout the simulation, and it only exceeds the diffu-
sional creep rate during a short period between 1 and 100 hours.  The duration of the simulation 
lasts until nearly 300,000 hours, when the Newton-Raphson algorithm diverges.  As with all cases 
before, the opening strain rate accelerates first at 2,000 hours, followed by grain boundary sliding 
at 10,000 hours, and lastly by dislocation creep at 80,000 hours.  The dislocation creep strain rate 
increases relatively rapidly near the end of life, faster than any of the other mechanisms, although 
the logarithmic scale disguises the fact that the ten-fold increase occurs during 200,000 hours.  
The dominance of the diffusional creep as the largest strain rate contribution leads to a long peri-
od of secondary creep with a minimum strain rate of 7 11 10  hr− −×  between about 200 to 100,000 
hours. 

The creep response of the cell model is reported for several lower stress levels in Figure 6-7 for 
the creep strain rate and Figure 6-8 for the accumulated strain.  Note that the equation solver di-
verges at a similar total strain level of 1% to 3% strain for all of the load levels.  As mentioned 
above, the creep rate curves become “flatter” at the lower stress levels due to the increased con-
tribution from diffusional creep in the grains, which is assumed to have a time and strain history 
independent diffusion coefficient.  Therefore, grain boundary sliding is the most significant con-
tributor to the transient nature of the total strain rate, and the boundaries appear to relax the ma-
jority of the strain rate by the end of 10 hours, when the creep strain rate has decreased by 4 or-
ders of magnitude from the initial strain rate at 0.1 hours (which includes the contribution from 
grain elasticity due to the applied stress increase during the load ramp period. 

Figure 6-9 compares the predicted minimum creep strain rate as computed by the cell model to 
two experimental datasets [23] [27].  As mentioned in Section 3.3.2, the variation of minimum 
strain rate reported by Kloc et al. [27] demonstrates a clear shift in dominant mechanism near the 
load level 100 MPa. This trend is also captured in the simulated response from the cell model.  
Although the predicted creep rates are about half of those of [27], the slopes of the curves are par-
allel.  This result is very important, considering that this dataset was not the target set for the cali-
bration at higher stress levels.  In particular, the simulation results for lower applied stresses of 1, 
10, and 30 MPa are also included in Figure 6-9. The simulation results are also in the neighbor-
hood of the data from Kimura et al. [23], with faster rates in some cases and slower in others. 
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Due to the change in slope on the logarithmic plot, which occurs between the stresses of 60 and 
100 MPa, the behavior of the cell model is classified into two regimes: “dislocation dominated” 
for response above 80 MPa and “diffusion dominated” for response below 80 MPa. 

Figure 6-10 presents the time to minimum creep rate as a function of applied stress.  The time 
values for the simulations of the cell model are slightly longer than those from the experimental 
dataset [23].  Also, the variation of the simulation results appear to have a nonlinear relation of 
time to minimum versus applied stress for loads below 80 MPa. 

Another distinguishing feature of the microstructural model with grain and boundary deformation 
mechanisms is that it can suggest transitions of dominant grain boundary cavity growth behavior 
at different levels of applied stress.  Thus, the statistics of the grain boundary state variables are 
examined in a series of figures across the range of applied stresses considered in this report: 60, 
80, 100, and 140 MPa. 

Figure 6-11 presents the evolution of normalized cavity diameter and number density averaged 
across all grain boundaries in the model.  Since the initial cavity size is 50 nm from Table 6-2 and 
the relative increase in size is about 10 to 20, the final cavity size is about 1-2 microns, which is 
comparable to observations of cavities in failed specimens of Grade 91 reported in Section 
2.3.1.1. 

Closely examining the normalized curves in parts (a) and (b) provides another important trend 
produced by the microstructural model.  For applied stresses above 80 MPa, the cavity nucleation 
rate   !N  is higher than the cavity growth rate   !a  with this dominance increasing as the applied 
stress increases.  For applied stress below 80 MPa, the reverse trend occurs; nucleation is slow 
relative to growth. By overlaying the black curves for 80 MPa in Figure 6-11 (a) and (b), the rates 
of cavity growth and nucleation are comparable.  This change at 80 MPa correlates with the knee 
in the minimum strain rate vs. applied stress curve in Figure 6-9 both for the experimental and 
simulated creep response.  Thus, the model predicts at higher stresses that a greater number of 
small cavities have developed by the time the specimen fails compared to lower stresses with 
fewer, larger cavities.  This trend of cavity sizes as a function of applied stress has been observed 
in creep tests for 12% Cr steel by Wu and Sandstrom [17].  In particular, this source reports ob-
serving cavities at failure with maximum diameter around 2.5 microns for 90 MPa loading and 
1.2 micron for higher stresses of 130 and 160 MPa. 

Figure 6-12 examines the evolution of the maximum value of cavity size and number of cavities 
across all grain boundary elements.  The lower stress levels require a longer time to reach the 
maximum number of cavities.  Recall that the ratio max 1000IN N =  in Table 6-2, which is 
reached only for the grain boundaries at 140 MPa in Figure 6-12 (b).  Another observation for the 
lower stresses of 60, 80, and 100 MPa is that the time at which the maximum number of cavities 
is reached is similar to the time that opening strain rate begins to accelerate for these models, a 
trend that is most easily seen by comparing with Figure 6-14 (a). 

Figure 6-13 presents the percentage of grain boundary elements with ratio of cavity size to spac-
ing of 0.5a b > .  This ratio is an indicator of cavity coalescence within a given grain boundary 
element. The curves for 60 and 80 MPa appear to be somewhat steeper, meaning that the cavities 
grow in size a bit more quickly in a relative sense.  Also, similar to the trends in Section 2.3.1.6, 
the steepest portion of the ( )0 max

a a  curves in Figure 6-12 (a) begin at instances in time similar to 
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the start of the respective curve in Figure 6-13.  Thus, coalescence or the value of porosity reach-
ing 0.5 appears to trigger the accelerated rapid cavity growth time period. 

A final intriguing result is found by comparing the increase in cavity size to the time to minimum 
grain boundary opening strain rate, as shown in Figure 6-14.  The horizontal line across Figure 
6-14 (b) corresponds to a 2.5 increase in cavity size, from 50 nm to 125 nm.  The elapsed time for 
140 MPa load level for this growth is about 100 hours, which is also the time for minimum open-
ing rate shown in Figure 6-14 (a) by the purple line.  Similarly, the time of 3,000 hours for mini-
mum opening rate of 60 MPa is not far from the 4,000 hour duration to 2.5 increase of cavity size.  
Note that the time to minimum opening rate greatly precedes the minimum total strain rate shown 
by the curves in Figure 6-7, although the change in slope from linear decreasing toward beginning 
of deceleration can help to discern this component strain rate.  Another key point in Figure 6-14 
(a) is that a straight line on the logarithmic plot passes very closely through the minimum strain 
rate points for all 4 load level curves, which spans across the mechanism transition for the grain 
deformation from dislocation creep to diffusional creep.   

6.2 Investigation	of	grain	boundary	sliding	contribution	to	primary	creep	

During preliminary investigations of the combined crystal plasticity and grain boundary mod-
els within the 3D cell simulations, the decreasing strain rate (primary creep) of the cell was found 
to depend upon both the amount of grain boundary sliding and the evolution of slip resistance 
within the grains.  Examples of these overlapping contributions are visible in Figure 6-4 for the 
100 MPa load case.  Initially, the overall cell strain rate is about 3 14 10  hr− −×  at 0.5 hours, and it 
quickly drops to 5 11 10  hr− −×  at 10 hours.  This drop in strain rate is associated with the blue curve 
for grain boundary sliding.  After this time, the dislocation creep from the crystal plasticity model 
in the grains is the largest strain rate, and it also continues to decrease from 6 15 10  hr− −×  to 

7 15 10  hr− −×  at 10,000 hours due to the increasing slip resistance 
  
!τ = τ y +τ w .  Therefore, in order 

to determine a unique set of calibrated material parameters that accounts for these overlapping 
mechanisms, a parametric study of grain boundary viscosity was performed to understand wheth-
er sliding alone could account for the long durations of primary creep exhibited by the creep 
curves of Kimura et al. [23]. 

This series of simulations for the cell model considered geometrically nonlinear kinematics 
with an applied total tensile force representing 120 MPa on the undeformed cell cross-section.  
Cavity growth on grain boundaries was suppressed so that steady state creep strain rates would be 
achieved by the cell model, hardening in the grains was suppressed by choosing the flow modulus 

6
0 10θ −=  MPa and saturation stress vτ  , and the diffusional creep coefficient was specified as 

0Dη = .  Therefore, the only transient effects exhibited by the cell model can be attributed to 

grain boundary sliding alone.  The reference strain rate is set to   !γ = 9.55×10−8  hr−1  along with 
the power-law exponent 12n = .  Two values of initial slip resistance are considered: 40yτ =  

MPa and 75yτ =  MPa.  Three levels of viscosity are compared: 310bη = , 510bη = , and 710bη =  

 MPa ⋅hr ⋅mm−1 .  These levels are similar to the estimated range of physically realistic values for 
viscosity in Chapter 2. 
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Figure 6-15 examines the evolution of creep strain rate for the cell model for each of the six 
combinations of the slip resistance and viscosity.  The three curves for 75yτ =  MPa, indicated by 
“t=75” in the legend, have the lower strain rates overall as well as slightly longer periods of tran-
sient strain rates.  For the cases with 310bη =   MPa ⋅hr ⋅mm−1 , the relaxation of grain boundaries 
is almost instantaneous within a fraction of an hour.  At higher viscosity 710bη =   MPa ⋅hr ⋅mm−1 , 
the relaxation is delayed the longest over a period of about 70 hours.  However, this duration is 
much less than the period of primary creep exhibited by the experimental data [23], for example 
2000 hours at 120 MPa in Figure 6-1.  Note that for each pair of curves with equal viscosity, such 
as 710bη =   MPa ⋅hr ⋅mm−1  denoted as “v=1e7”, the initial portions of the creep rate curves over-
lap, suggesting that the initial deformation is concentrated into the grain boundaries while the 
grains deform mostly at constant rate.  Also, each of the simulations with the same slip resistance 
ultimately converge to the same steady state creep strain rate at later times; the extended period of 
strain rate decay could be due to the nonlinear kinematics and the non-zero value of saturation 
stress vτ . 

The shape of the primary creep portion of each curve is concave downward on the logarithmic 
scale, suggesting that the sliding rate drops more rapidly as a larger percentage of grain bounda-
ries slide into a locked position at triple points.  Only a finite amount of sliding can be accommo-
dated in the microstructure due to geometric constraint without additional normal direction open-
ing of grain boundaries.  Also, since a single value of viscosity is assigned to all grain boundaries, 
their relaxation rate is similar throughout the cell. Preliminary studies of the cell model with a sta-
tistical distribution of viscosity parameter among grain boundaries [12] showed that the duration 
of primary creep could be extended by a factor of two or four. 

However, the experimental creep curves for Grade 91 reported by Kimura et al. [23] clearly 
show a period of primary creep lasting one to several orders of magnitude time longer than 100 
hours.  In contrast, other simulations with higher levels of viscosity, such as 910bη =  
 MPa ⋅hr ⋅mm−1  in Figure 3-15, are found to contain almost no grain boundary sliding since the 
high viscosity keeps the grain boundaries locked past the time at which creep rate increases due to 
slow cavity growth or increase in stress due to reduction in cell cross-sectional area.  Thus, the 
contribution of GB sliding to transient strain rate effects in the cell model has a limited duration 
of 100 hours when the viscosity is in an optimal range of 6 710 10bη = −  1MPa hr mm−⋅ ⋅ .  For low 
viscosity, the grain boundaries relax too quickly and become constrained at triple points, leading 
to stress concentrations and issues discussed in Chapter 4.  For high viscosity, sliding is prohibit-
ed and does not begin before other mechanisms of deformation initiate.  Therefore, the long dura-
tions of nearly constant slope of creep strain rate reduction in the experimental data are accounted 
for by other mechanisms in the microstructural modeling framework, namely the evolution of slip 
resistance in the crystal plasticity model. 

6.3 Conclusions	

This section presents the combination of the two physics-based models to capture the primary, 
secondary, and tertiary phases of Grade 91 creep response at 600 C: growth and coalesce of cavi-
ties along grain boundaries (modeled by interface elements also including grain boundary sliding) 
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and evolution of dislocations and other defects within grains (modeled by the crystal plasticity 
finite element method).  Simulations of the cell model are conducted at several applied loads, and 
the resulting cell strain rates are decomposed to understand the fraction associated with each 
mechanism in the modeling framework. 

The response of the 3D cell during the early period of the loading history is characterized by 
sliding of grain boundaries to cause local grain motion, rotation, and elevated stresses near sur-
faces of certain geometrically preferred strains.  At the same time and over a longer period, reduc-
tion in mobile dislocation density and other dislocation processes within grains lead to decreasing 
creep strain rates over time.  Both of these phenomena contribute to the accumulated creep strain 
of the cell.  After an extended period, the heightened stresses along grain boundaries drive the 
growth of cavities which induce an acceleration of the cell creep strain rate. Individual grain 
boundaries begin to experience failure with the geometrical linking up of sufficient grain bounda-
ries to create a rupture surface over the cell roughly transverse to the applied loading.  The 
elapsed time and total accumulated strain prior to strain rate acceleration are dependent on the 
applied stress as well as whether dislocation creep or diffusional creep is the dominant defor-
mation mechanism within the grains. 

The following points summarize the key findings from these series of simulations. 

• The calibrated material models for the grain and grain boundary models are first employed 
in simulations for remote applied tractions of 100, 110, 120, 140, and 160 MPa at 600oC.  
For the load level 140 MPa, the simulated strain rate history appears almost identical to 
the experimental curve from Kimura et al. [23] during the entire test duration.  At the low-
er load levels, the minimum strain rate is over-predicted by a factor of two or less, and the 
experimental curve for 160 MPa has a faster acceleration than the simulated curve.  The 
time elapsed to minimum creep rate is more closely captured by the model for all load 
levels. The maximum strain level before divergence of the numerical simulations are 
about 1-2 % strain, while the tests typically reach 20% strain accommodated by necking.  
Detailed investigations of the cell model solution fields reveal that significant cavity 
growth has taken place by the time 1% overall strain is reached, so that the model is cap-
turing the onset and early stages of damage during tertiary creep. 

• The total cell average strain rate tensor was decomposed into component mechanisms 
from grains and grain boundaries by numerically integrating the strain tensors associated 
with solid and interface finite elements across the cell model.  The decomposition of the 
cell average strain rate was investigated for specific load levels: 140, 100, 80, and 60 
MPa.  Several distinct phases are evident at the higher applied load levels.  During the 
load ramp period and shortly after, the elastic strain rate in the grains and the sliding along 
grain boundaries dominates the total cell deformation, up to about 1 hour.  Then, the strain 
rate from sliding continues to decrease by several orders of magnitude up to 2 to 5 hours 
when the grain dislocation creep becomes the largest component of the total strain rate.  
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At the 140 MPa load level, the opening rate begins to increase at 100 hours due to the on-
set of cavity nucleation and growth. The second component to accelerate is the grain 
boundary sliding, signifying that boundaries are likely relaxing from the additional open-
ing displacement and allowing more sliding to take place.  Lastly, the grain creep strain 
rate accelerates after 1000 hours is reached; this may be attributed to redistribution of 
stress between grains due to failed grain boundary facets with large cavity populations that 
no longer transmit much traction across the microstructure.  The explanation due to un-
locking of boundary deformation followed by stress shifting to grains along alternative 
load paths is a logical explanation of the sequence of mechanisms apparent in the strain 
rates. 

• The decomposed strain rates at lower applied stresses exhibit distinguishing features com-
pared to the 100 MPa case, the lowest load level reported in [23].  At 80 MPa applied 
load, the transition of dominant mechanism from sliding to grain creep occurs at 30 hours, 
while the transition is at 10 hours for the 100 MPa case.  Also, the dislocation creep rate is 
comparable to the sliding strain rate during much of the primary creep regime; both of the 
curve have a similar slope of strain rate versus time.  Most importantly, the diffusional 
creep within the grains exceeds the strain rate for dislocation creep after 2,000 hours, 
similar to the time at which the opening strain rate reaches its minimum value at 1,000 
hours.  The larger contribution from diffusional creep manifests in the total strain rate of 
the cell model by extending the period of secondary creep, the duration of which the strain 
rate is nearly constant.  Under a 60 MPa applied load, the strain rate contribution from dis-
location creep is lower than grain boundary sliding throughout the simulation, and it only 
exceeds the diffusional creep rate during a short period between 1 and 100 hours.  The du-
ration of the simulated creep response lasts until nearly 300,000 hours.  As with all cases 
before, the opening strain rate accelerates first at 2,000 hours, followed by grain boundary 
sliding at 10,000 hours, and lastly by dislocation creep at 80,000 hours. 

• The predicted minimum creep strain rate computed by the cell model is compared with 
two experimental datasets [23] [27].  The simulated response of the cell model captures 
the clear shift in dominant mechanism near the load level 100 MPa reported by Kloc et al. 
[27].  Although the predicted creep rates are about half of those of [27], the slopes of the 
curves are parallel.  This result is very important, considering that this dataset was not the 
target set for the calibration at higher stress levels. 

• Another distinguishing feature of the microstructural model with grain and boundary de-
formation mechanisms is that it can suggest transitions of dominant grain boundary cavity 
growth behavior at different levels of applied stress.  Thus, the statistics of the grain 
boundary state variables are examined in a series of figures across the range of applied 
stresses considered in this report: 60, 80, 100, and 140 MPa.  The average size of cavities 
along grain boundaries evolves from about 50 nm diameter to 1-2 micron diameter during 
the simulation, which is comparable to observations of cavities in failed specimens of 
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Grade 91 reported in Chapter 2.  For applied stresses above 80 MPa, the cavity nucleation 
rate   !N  is higher than the cavity growth rate   !a  with this dominance increasing as the ap-
plied stress increases. For applied stress below 80 MPa, the reverse trend occurs; nuclea-
tion is slow relative to growth.  This change at 80 MPa correlates with the knee in the 
minimum strain rate vs. applied stress curve both for the experimental and simulated creep 
response.  Thus, the model predicts at higher stresses that a greater number of small cavi-
ties have developed by the time the specimen fails compared to lower stresses with fewer, 
larger cavities.  This trend of cavity sizes as a function of applied stress has been observed 
in creep tests for 12% Cr steel by Wu and Sandstrom [17]. 

• Other corresponding trends have been observed between the decomposed cell strain rates 
and the grain boundary cavity states during the cell model creep simulations, for example 
by comparing the increase in cavity size to the time to minimum grain boundary opening 
strain rate.  During the elapsed time of 100 hours for 140 MPa load level, the average cav-
ity size grows from 50 nm to 125 nm, about a 2.5 increase in cavity size.  The time at 
which the cell average strain rate begins to accelerate at 140 MPa also occurs at 100 
hours. Similarly, the time of 3,000 hours for minimum opening rate of 60 MPa is not far 
from the 4,000 hour duration to 2.5 increase of cavity size; agreement is also observed for 
the 80 and 100 MPa load levels.  Note that the time to minimum opening rate greatly pre-
cedes the minimum total strain rate, although the change in slope from linear decreasing 
toward beginning of deceleration can help to discern this component strain rate.  Such 
agreements between macroscale quantities such as cell average strain and microscale 
quantities such as cavity distributions and sizes provide insights into the nature of defor-
mation evolution in the microstructural cell model of Grade 91. 

• Overall, the validated model suggests a clear creep mechanism shift from dislocation-
dominated to diffusion-dominated at applied loads of about 100 MPa.   This suggests 
methods for extrapolating creep properties from shorter-term experimental data to the long 
design lives planned for advanced reactor concepts may produce non-conservative results.  
This report considers 600° C.  Physical arguments suggest that the mechanism shift will 
occur at higher stresses at lower temperatures and lower stresses at higher temperatures.   
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6.4 Chapter	figures	

 

 

Figure 6-1. Macroscopic cell strain rate (/h) versus model time (h) for cell model using calibrated 
material parameters including dislocation creep and diffusional creep within the grains and 
sliding and cavity nucleation along grain boundaries, compared to experimental data from 
Kimura et al. 
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Figure 6-2. Macroscopic accumulated strain (mm/mm) versus model time (h) for cell model 
using calibrated material parameters  
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Figure 6-3. Macroscopic cell strain rate decomposition into mechanisms within the grains and along 
grain boundaries at superimposed load level 140 MPa 
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Figure 6-4. Macroscopic cell strain rate decomposition into mechanisms within the grains and along 
grain boundaries at superimposed load level 100 MPa 
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Figure 6-5. Macroscopic cell strain rate decomposition into mechanisms within the grains and along 
grain boundaries at superimposed load level 80 MPa 
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Figure 6-6. Macroscopic cell strain rate decomposition into mechanisms within the grains and along 
grain boundaries at superimposed load level 60 MPa 
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Figure 6-7. Macroscopic cell strain rate (/h) versus model time (h), model predictions for creep re-
sponse at reduced load levels below 100 MPa 
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Figure 6-8. Macroscopic accumulated strain (mm/mm) versus model time (h), model predictions for 
creep response at reduced load levels below 100 MPa 

 



FY17	Status	Report	on	the	Micromechanical	Finite	Element	Modeling	of	Creep	Fracture	of	Grade	91	Steel	
September	2017	
 

	 165	 ANL-ART-95	

 

Figure 6-9. Variation of minimum creep strain rate with respect to applied stress from cell model 
compared to experimentally obtained rates for Grade 91 tests at 600 C from Kimura et al. 
and Kloc et al. 
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Figure 6-10. Variation of time elapsed to minimum creep strain rate with respect to applied stress 

from cell model compared to experimentally obtained rates for Grade 91 tests at 600 C from 
Kimura et al. 
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(a) 

 
(b) 

Figure 6-11. Effect of applied load level for constant material parameters on (a) average cavity size 
(across all grain boundary integration points), relative to initial cavity size and (b) average 
number of cavities (across all grain boundary integration points), relative to initial number 
of cavities 
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(a) 

 
(b) 

Figure 6-12. Effect of applied load level for constant material parameters on (a) maximum cavity 
size (among all grain boundary integration points), relative to initial cavity size and (b) max-
imum number of cavities (among all grain boundary integration points), relative to initial 
number of cavities 
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Figure 6-13. Effect of applied load level for constant material parameters on percentage of grain 
boundary elements with 0.5a b >    
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Figure 6-14. Effect of applied load level for constant material parameters on (a) time to minimum 

grain boundary opening creep rate and (b) time to average cavity size ( )0 2.5
avg

a a =     
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Figure 6-15. Macroscopic cell strain rate (/h) versus model time (h) during primary creep for differ-
ent grain boundary viscosity bη  and grain viscoplastic initial slip resistance yτ   
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7 The	Effect	of	Triaxiality:	Notch	Strengthening	and	Weakening	

7.1 Background	

Notched bar creep tests can show either longer or shorter creep lives when compared to a 
straight bar specimen.  The former is called notch strengthening and the latter notch weakening.  
Materials are often characterized as notch strengthening or weakening depending on their behav-
ior under some standard set of test conditions [79].  However, experimental results show that the 
response of a material to a notch can depend on notch geometry [80] [81] and test environment 
[82].  The notch sensitivity of a material has a practical design impact: for notch strengthening 
materials a designer can ignore the effect of stress concentration when designing against creep 
rupture under constant primary load, but for notch weakening the effect of the stress concentra-
tion must be considered.  Therefore, it is important to establish the notch sensitivity of Grade 91 
at different temperatures, loads, and notch severities to determine if it will be notch weakening 
under any realistic design conditions. 

Previous results for Grade 91 and similar steels generally indicate that they are notch 
strengthening  [4] [83] [84] but can transition to notch weakening for severe notches [85] and 
possibly at lower temperatures and stress levels [5].  To our knowledge, no one has directly ob-
served notch weakening for moderate notches in Grade 91 either at low temperature or at low 
stress levels, but previous works have speculated such a transition might exist.  Low temperature 
and low stress tests are difficult experiments as they necessarily take a long time to complete and 
there is therefore limited experimental data on Grade 91, or other materials, in this regime.  How-
ever, new advanced reactor designs target 60 year design lives meaning if a transition to notch 
weakening behavior exists in Grade 91 it may eventually manifest and result in non-conservative 
designs. 

This chapter applies the crystal plasticity model for creep deformation and rupture developed 
in this report to describe notch strengthening and weakening behavior in Grade 91.  The results 
indicate that while Grade 91 is generally notch strengthening it will transition to notch weakening 
behavior at low stresses and creep rates and for very severe notches.  This is an important result 
as it could indicate a need to account for notches in primary stress design methods.  This chapter 
develops a simplified microstructural model that explains the full simulation results.  This model 
hypothesizes an equivalence between more severe notches and lower stresses/smaller creep rates, 
suggesting a possible surrogate experiment to probe notch sensitivity at lower stresses by testing 
severely notched specimens. 

7.2 Model	setup	

This chapter starts with the periodic RVE developed in Chapter 5.  Simulations results using 
that RVE are nearly identical to the block RVE considered in the rest of the report for high stress 
loading, above 100 MPa, and secondary and tertiary creep properties are consistent between the 
two models for lower stresses.  Therefore, the results from the periodic RVE are consistent with 
the block RVE, which in turn has been validated against experimental data in Chapter 6. 

However, the periodic RVE does not reach the tertiary creep stage before failing due to nu-
merical instability.  Therefore, Chapter 5 introduced the time to GB opening as a surrogate meas-
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ure of rupture life.  This measure will be used in this chapter to assess the effect of notches on 
creep life. 

Notch effects on creep life are often thought of in terms of stress triaxiality.  Introducing a 
notch increases the stress triaxiality – the ratio of the mean stress to the effective stress – in the 
notched region.  This change in stress state in turn is thought to trigger differences in the creep 
mechanisms active in the material, leading to notch effects.  To model increased triaxiality this 
chapter applies a macroscale stress state described by 

   (7.1) 

where  is the applied loading stress, i.e. the actual stress applied in the experiment, and  is 
the triaxiality ratio.  Note that with this definition and for   F >1  and  σ > 0   

   (7.2) 

with   the mean stress and   the effective stress. 

The transverse stresses are applied through the dummy degrees of freedom, as described in 
Chapter 5.  They are increased proportionally to the applied load and then held constant for the 
duration of the creep simulation. 

This chapter considers a series of simulations to test the effect of triaxiality on the model at 
three different loading stresses: 60, 140, and 200 MPa.  At each stress level, four simulations are 
added to the previous simulation results with no transverse stresses, producing results for triaxi-
ality ratios of 1.0, 1.5, 2.0, 2.5, and 3.0.  Table 7-1 shows the transverse stresses for each case, 
calculated using Equation (7.1).  Material properties are those of the final, full model for Grade 
91, described earlier in this report. 

7.3 The	effect	of	triaxiality	

Figure 1-1 shows the effect of triaxiality on creep for the full model.  The figure shows the 
creep rate versus time curve for each combination of load and triaxiality.  In general, triaxiality 
tends to decrease the primary and, for the low load cases that undergo it, secondary creep rates.  
The next set of figures show the effect of triaxiality on the different deformation mechanisms in-
cluded in the material simulations.  Figure 7-2 and Figure 7-3 show the loading direction and ef-
fective strain rates for the 60 MPa case at the five different levels of triaxiality, broken down by 
mechanism.  Figure 7-4 and Figure 7-5 show similar plots for 140 MPa and Figure 7-6 and Figure 
7-7 similar figures for 200 MPa.  In general, triaxiality suppresses all the deformation rates except 
the linear viscous grain bulk term designed to represent bulk diffusional mechanisms.  However, 
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it particularly suppresses grain bulk plasticity, reducing its importance relative to the linear vis-
cous deformation mechanism. 

Table 7-1 summarizes the effect of triaxiality on the time to GB opening for the three differ-
ent load levels.  At the highest load, 200 MPa, the model predicts notch strengthening behavior 
for all the simulated triaxialities.  At the intermediate load, 140 MPa, the model predicts notch 
strengthening for low to intermediate triaxialities, transitioning to notch weakening for high triax-
iality ratios.  Finally, at the lowest load, 60 MPa, the model predicts notch weakening behavior.   

Figure 7-8 shows the general trend for time to opening as a function of stress.  Figure 7-9 
graphically summarizes the results described in the previous paragraph by plotting the time to 
opening as a function of triaxiality at the three loading stresses.  The behavior described by Figure 
7-9b and by Figure 7-9c has been experimentally observed: both pure notch strengthening for rel-
atively high stress creep experiments [7] and a transition between notch strengthening and notch 
weakening behavior as triaxiality increases for intermediate stress levels [9].  The behavior shown 
in Figure 7-9a – pure notch weakening for low loads/creep rates – has not been observed experi-
mentally. 

If the predicted transition to notch weakening behavior at low stresses exists in the actual ma-
terial it will have an impact on long service life reactor designs.  Current design methods for pri-
mary load creep rupture assume notch strengthening behavior, allowing the designer to ignore the 
effect of stress concentrations.  These results indicate that Grade 91 may transition to notch 
weakening behavior for low creep rates and severe notches, necessitating a change in design prac-
tice. 

The transition between notch strengthening and notch weakening behavior occurs approxi-
mately at the load level where the model transitions from a crystal plasticity dominated response 
to a diffusion/linear viscous dominated response – approximately at 100 MPa.  As shown in 
Chapter 6 this transition has been observed experimentally.  This mechanism shift suggests a 
simplified model that captures the trends observed here for the full simulations. 

7.4 A	simplified	microstructural	model	

Consider a representative polycrystal under the stress state described by Equation (7.1).  For 
  F = 1  the polycrystal is under uniaxial tension and as  F  increases so does the triaxiality.  Con-
sider only dissipative deformation in the grain bulk.  The simulations consider two mechanisms: 
the crystal plasticity model designed to represent dislocation motion and the linear viscous term 
designed to represent bulk diffusion.  The average strain rate in the polycrystal is then 

 
  
!ε = !ε diffusion + !ε dislocation   (7.3) 

where  indicate an average over orientation space.  The diffusional term has no orientation 
dependence and can be represented as linear viscous deformation: 

 
   
!ε diffusion = k1σ   (7.4) 
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This is the exact form used in the simulations and a reasonable approximation for general diffu-
sive mechanisms in the real material.  The dislocation contribution might be approximated as 
power law slip on each slip system: 

 
    
!ε dislocation = k2

i=1

nslip

∑ Σ i : Mi

n
sign Σ i : Mi( )⎡

⎢⎢
⎤
⎥⎥
Mi   (7.5) 

where the sum is over each slip system,  Σ i  is the stress in grain i,   Mi  is the system Schmid ten-
sor in sample coordinates, i.e.  

    Mi = gT sym bi ⊗ni( )g   (7.6) 

with   bi  the slip direction,   ni  the slip plane normal, and  g  the orientation rotation, and ⎡⎢ ⎤⎥  the 
Macaulay brackets. 

To simplify the final model consider the Sachs approximation that the stress in each grain is 
the macroscale, applied stress: 

  Σ i = σ   (7.7) 

Classically, the Sachs hypothesis is a poor choice for crystals with a large number of independent 
slip systems as it will result in some systems with unrealistically high activation compared to oth-
ers.  However, for power law behavior in rigidly connected grains creep will tend to equalize the 
stresses in the different grains and so the Sachs approach may be reasonable for the long-term 
creep state of a polycrystal. 

Now assume that the polycrystal will creep rupture when it reaches a critical amount of dissipated 
work: 

 
    
Wf = σ :

0

tlife

∫ !ε dt = k1σ : σ + k2
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sign σ : Mi( )⎡

⎢⎢
⎤
⎥⎥
Mi :σ

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪0

tlife

∫ dt   (7.8) 

This expression simplifies to  

 
  
Wf = k1φ1 F( )σ 2 + k2φ2 F( )σ n+1{ }dt

0

tlife

∫   (7.9) 

with  

 

  

φ1 F( ) = 3 2+ F 2( )
2+ F( )2   (7.10) 

 
  
φ2 F( ) = χ F( )

χ 0( )   (7.11) 

and  
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χ F( ) = D : Mi

n
sign D : Mi( )⎡

⎢⎢
⎤
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D : Mi

i=1

nslip

∑   (7.12) 

with  D  the direction of stress  
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  (7.13) 

The function χ  can be computed with an integral over orientation space.  Figure 7-10 shows the 
factor  φ1  and Figure 7-11 shows  φ2  for a random texture and the BCC  111⎡⎣ ⎤⎦ × 110{ }  slip systems 

used in the crystal plasticity model.   φ1  increases with triaxiality ratio.  This makes physical sense 
as pressure, which increases with triaxiality, is a driving force for diffusion.   φ2  decreases with 
temperature, expressing the well-known principle that triaxiality suppresses plasticity.  The values 
of  φ2  shown in the figure were computed via numerical integration over orientation space.  How-

ever,   φ2 = 1/ F 5  well-approximates the data. 

Equation (7.9) can be cast as a model for rupture life: 

 
  
tlife =

Wf

k1φ1 F( )σ 2 + k2φ2 F( )σ n+1   (7.14) 

This tacitly assumes the material state remains fixed, which will not be true in the actual material.  
Nevertheless, the model adequately describes the interplay of dislocation and diffusion dominated 
processes causing notch strengthening and weakening in the simulation results. 

Figure 7-12 sketches the effect of stress on the time-to-rupture predicted by the model for 
  F = 1 .  A comparison to Figure 7-8 shows that the model captures the trends in the simulation 
data.  Figure 7-13 then shows the predicted influence of triaxiality on rupture life for low, moder-
ate, and high applied stress.  For low applied stress the model predicts notch weakening, at mod-
erates stresses the model predicts a transition from notch strengthening to notch weakening, and 
at high applied stress the model predicts notch strengthening.  This agrees with the simulation re-
sults shown in Figure 7-9 and the functional form of the triaxiality dependence seems to agree 
with the simulation data. 

The simplified model behavior can be described as a trade-off between dislocation dominated 
and diffusion dominated deformation.  The key point is that diffusional deformation has a lower 
rate sensitivity exponent than dislocation dominated deformation and that triaxiality increases the 
rate pre-factor for diffusion but decreases it for dislocation motion.  Because dislocation motion is 
more rate sensitive it will dominate at higher stresses and diffusional motion will dominate at 
lower stresses.  The model predicts that triaxiality will decrease rupture life in the diffusion re-
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gime and increase rupture life in the dislocation regime.  Therefore at low stress, where the diffu-
sional term governs, the material will be notch weakening.  At high stress, where the dislocation 
term governs, the material will be notch strengthening.  At intermediate stresses the two terms 
will result in a tradeoff between notch strengthening and notch weakening. 

The model predicts that the transition between notch-strengthening and notch-weakening be-
havior is the same as the transition between dislocation-dominated and diffusion-dominated re-
sponse.  The full simulation results support such as a trade off as does the experimental literature 
(see Chapter 6).  This provides a potential screening test to determine if a particular material in 
particular environmental and loading conditions will be notch strengthening or notch weakening: 
measure the effective rate sensitivity of creep deformation using short term, primary creep data 
and determine if the mechanism is diffusional (  n ≈1).  If so, this simple model predicts the mate-
rial will be notch weakening, particularly for severe notches. 

As the above description shows, any model with the form of Equation (7.14) with an increas-
ing  φ1  and decreasing  φ2  would qualitatively match the data.  The advantage of the simple model 
here is that it provides an explicit way to calculate  φ1  and  φ2  so that the model includes the effect 
of texture and crystal system. 

The model delimitates the notch strengthening and notch weakening regimes.  Define the 
notch sensitivity of the material as the derivative  

 
 
N =

∂tlife

∂F
  (7.15) 

The material is notch strengthening if   N > 0  and notch weakening if   N < 0 .  Making the approx-
imation that   φ2 F( ) ≈1/ x5  then  
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2   (7.16) 

which can be used to map the boundary between notch weakening and notch softening as a func-
tion of loading stress and triaxiality.  This boundary is: 
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5k2σ
n

F 6 = 0  . (7.17) 
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As described above, one reason why notched tests are not commonly performed in low stress, 
potentially notch-weakening conditions is that the creep rates are low and the experiments take a 
long time to complete.  The simple microstructural model developed here suggests an equivalence 
between low stresses and severe notches when testing for notch strengthening or weakening be-
havior.  For example, when determining the constants   k1  and   k2  in Equation (7.18) experimental-
ly a test procedure can either vary σ  or  F  to generate the required data.  The choice could be 
made based on the expected time required to rupture the specimen.  Of course this assumes that 
only two mechanisms, dislocation-based and diffusion-based, influence the deformation of the 
material. 

7.5 Summary	

This chapter explores the effect of triaxiality on the response of the crystal plasticity model 
for creep and creep rupture in Grade 91 steel.  The model predicts a transition between notch 
weakening and notch strengthening behavior in the material as either of the loading stress or tri-
axiality ratio vary.  This implies that Grade 91 may transition to notch weakening behavior under 
low stresses/low creep rates/long creep lives, which would impact reactor structural design meth-
ods. 

The chapter develops a simplified microstructural model for notch sensitivity that accounts 
for crystal system, texture, notch severity, and applied load effects.  This simple model can be 
explained as the interplay of dislocation and diffusion dominated regimes of deformation.  Future 
work will examine this model in relation to existing experimental data and previous theories of 
notch effects. 

7.6 Chapter	figures	
 

 
Figure 7-1. Effect of triaxiality on the opening strain rates at three stress levels: 60 MPa, 140 MPa, 

and 200 MPa. 
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Figure 7-2. Opening strain rates at 60 MPa showing the effect of triaxiality. 
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Figure 7-3. Effective strain rates at 60 MPa showing the effect of triaxiality. 
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Figure 7-4. Opening strain rates at 140 MPa showing the effect of triaxiality. 
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Figure 7-5. Effective strain rates at 140 MPa showing the effect of triaxiality. 
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Figure 7-6. Opening strain rates at 200 MPa showing the effect of triaxiality. 
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Figure 7-7. Effective strain rates at 200 MPa showing the effect of triaxiality. 
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Figure 7-8. Effect of stress on the time to opening in the periodic RVE with  . 

 

 
Figure 7-9. Effect of triaxiality on the time to opening in the periodic RVE for three stress levels. 

 

		F =1
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Figure 7-10. Parameter  φ1  describing the effect of triaxiality on the linear viscous term designed to 

approximate the effect of diffusional deformation mechanisms.  

 

 
Figure 7-11. Parameter  φ2  describing the effect of triaxiality on plasticity through the crystal system 

and material texture.  
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Figure 7-12. The effect of tensile stress on the conceptual model for creep life. 

 

 
Figure 7-13. The effect of triaxiality on the model for creep life at low, moderate, and high stresses. 
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Table 7-1. Time to minimum GB opening rate for several stress levels comparing the periodic and 
block simulations.  The table includes a column for time to the start of tertiary creep, which could 

only be reliably computed for the block models.  A > symbol in the time to tertiary column indicates 
the simulation did not ever achieve the criteria described in the main text for identifying the onset of 
tertiary creep.  However, all these simulations did show an increasing creep strain rate by the final 

successful load step. 

Stress level 
(MPa) 

Triaxiality ratio Transverse stresses 
(MPa) 

Time to opening 
(hrs) 

60 1.0 0.0 25120 
“ 1.5 8.55 25120 
“ 2.0 15.0 23260 
“ 2.5 20.0 22775 
“ 3.0 24.0 22775 
140 1.0 0.0 594 
“ 1.5 20.0 1520 
“ 2.0 35.0 2200 
“ 2.5 46.7 1900 
“ 3.0 56.0 655 
200 1.0 0.0 >24.6 
“ 1.5 28.5 74.0 
“ 2.0 50.0 114 
“ 2.5 66.8 156 
“ 3.0 80.0 201 
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8 Summary	and	Conclusions	

8.1 Summary	

The key results of this project to date are: 

• A complete microstructural model for creep deformation in Grade 91 at 600° C.  The 
model represents grain bulk deformation with a composite model including a slip-system-
based crystal plasticity contribution representing dislocation-mediated creep and a linear 
viscous, isotropic term homogenizing the diffusional processes occurring along the sub-
PAG defect network.  The report validates this model against the available experimental 
data for Grade 91: complete creep curves at high stress and primary creep rates at lower 
stresses.  This validated model incorporates developments and lessons learned in prior re-
porting periods into a tool that can predict low-stress, long-life creep properties of Grade 
91. 

• The model predicts a mechanism shift between diffusion and dislocation dominated creep 
occurring at 100 MPa at 600° C.  This mechanism shift changes the shape of the predicted 
creep curves and manifests as a change in trend on plots of minimum creep rate and time 
to tertiary creep versus load.  This mechanism shift may affect the accuracy of conven-
tional methods of extrapolating high stress, short-term creep data to long-term properties, 
impacting the design of advanced reactors.  

• Short term experiments generally show Grade 91 to be notch strengthening.  However, the 
microstructural model predicts that is only generally true for high axial stress.  For moder-
ate axial stresses the model predicts a transition from notch strengthening to notch weak-
ening as the severity of the notch increases.  In the low stress, long life, diffusional regime 
the model predicts notch weakening behavior.  If confirmed by experiments this would 
have a significant impact on long design life reactor designs as conventional design meth-
ods assume notch strengthening behavior. 

Other results of this reporting period are: 

• Improvements to the numerical implementation of the grain boundary model, increasing 
the numerical stability of the overall simulation framework and allowing the simulations 
to progress further into the tertiary creep regime. 

• The composite crystal plasticity/linear viscous model for grain bulk behavior.  This ap-
proach compares favorably to a dislocation density-based model implemented during the 
prior reporting period. 

• A study showing that the block-sided RVE and boundary conditions used in these simula-
tions have only a limited effect on the homogenized results when compared to true period-
ic cells and boundary conditions.  Differences between the two approaches are only no-
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ticeable in the primary creep regime of low stress simulations and can be attributed to arti-
ficial confinement of GB sliding on the block RVE faces. 

• A software package for inserting cohesive elements on grain boundaries in true periodic 
RVEs. 

• An exploration of numerical issues at triple points in simulations including GB sliding.  
Choosing an appropriate penalty stiffness can mitigate the near-singular tractions and os-
cillating stress fields developed by contact conditions at triple points. 

8.2 Future	work	

Potential topics for future work and improvement of the simulation framework include: 

• Extending the model to include the effect of temperature.  This may be relatively straight-
forward – both the diffusional and dislocation/slip terms are thermally activated and the 
temperature scaling of such models is well known.  Simplified models, like the type used 
in Chapter 7 to describe the effect of triaxiality, can also be used to reduce the required 
computational effort to simulate a wide range of temperature/stress combinations. 

• Validation of the predicted transition between notch strengthening and weakening and the 
extension of the simple model to other materials.  Other structural materials included in 
advanced reactor designs may show a similar switch to notch-weakening behavior at low-
er stresses and higher temperatures. 

• A more accurate representation of diffusional effects.  The current model homogenizes all 
diffusional deformation mechanisms into an isotropic, linear-viscous term.  This is a good 
first approximation but a better model would explicitly model at least some of these 
mechanisms.  Furthermore, even the treatment of diffusional void growth in the GB model 
is approximate as it is based on the periodic analysis of a single void cell.  A multiphysics 
model could explicitly represent vacancy transport and couple it to the physical response 
of the grains and grain boundaries. 
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